| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pfxval | ⊢ ( ( 𝑆  ∈  Word  𝐴  ∧  𝐿  ∈  ℕ0 )  →  ( 𝑆  prefix  𝐿 )  =  ( 𝑆  substr  〈 0 ,  𝐿 〉 ) ) | 
						
							| 2 |  | simpr | ⊢ ( ( 𝑆  ∈  V  ∧  𝐿  ∈  ℕ0 )  →  𝐿  ∈  ℕ0 ) | 
						
							| 3 | 2 | con3i | ⊢ ( ¬  𝐿  ∈  ℕ0  →  ¬  ( 𝑆  ∈  V  ∧  𝐿  ∈  ℕ0 ) ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝑆  ∈  Word  𝐴  ∧  ¬  𝐿  ∈  ℕ0 )  →  ¬  ( 𝑆  ∈  V  ∧  𝐿  ∈  ℕ0 ) ) | 
						
							| 5 |  | pfxnndmnd | ⊢ ( ¬  ( 𝑆  ∈  V  ∧  𝐿  ∈  ℕ0 )  →  ( 𝑆  prefix  𝐿 )  =  ∅ ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝑆  ∈  Word  𝐴  ∧  ¬  𝐿  ∈  ℕ0 )  →  ( 𝑆  prefix  𝐿 )  =  ∅ ) | 
						
							| 7 |  | simpr | ⊢ ( ( 0  ∈  ℕ0  ∧  𝐿  ∈  ℕ0 )  →  𝐿  ∈  ℕ0 ) | 
						
							| 8 | 7 | con3i | ⊢ ( ¬  𝐿  ∈  ℕ0  →  ¬  ( 0  ∈  ℕ0  ∧  𝐿  ∈  ℕ0 ) ) | 
						
							| 9 |  | swrdnnn0nd | ⊢ ( ( 𝑆  ∈  Word  𝐴  ∧  ¬  ( 0  ∈  ℕ0  ∧  𝐿  ∈  ℕ0 ) )  →  ( 𝑆  substr  〈 0 ,  𝐿 〉 )  =  ∅ ) | 
						
							| 10 | 8 9 | sylan2 | ⊢ ( ( 𝑆  ∈  Word  𝐴  ∧  ¬  𝐿  ∈  ℕ0 )  →  ( 𝑆  substr  〈 0 ,  𝐿 〉 )  =  ∅ ) | 
						
							| 11 | 6 10 | eqtr4d | ⊢ ( ( 𝑆  ∈  Word  𝐴  ∧  ¬  𝐿  ∈  ℕ0 )  →  ( 𝑆  prefix  𝐿 )  =  ( 𝑆  substr  〈 0 ,  𝐿 〉 ) ) | 
						
							| 12 | 1 11 | pm2.61dan | ⊢ ( 𝑆  ∈  Word  𝐴  →  ( 𝑆  prefix  𝐿 )  =  ( 𝑆  substr  〈 0 ,  𝐿 〉 ) ) |