Step |
Hyp |
Ref |
Expression |
1 |
|
ianor |
⊢ ( ¬ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ↔ ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ) ) |
2 |
|
ianor |
⊢ ( ¬ ( 𝐹 ∈ ℤ ∧ 0 ≤ 𝐹 ) ↔ ( ¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹 ) ) |
3 |
|
elnn0z |
⊢ ( 𝐹 ∈ ℕ0 ↔ ( 𝐹 ∈ ℤ ∧ 0 ≤ 𝐹 ) ) |
4 |
2 3
|
xchnxbir |
⊢ ( ¬ 𝐹 ∈ ℕ0 ↔ ( ¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹 ) ) |
5 |
|
ianor |
⊢ ( ¬ ( 𝐿 ∈ ℤ ∧ 0 ≤ 𝐿 ) ↔ ( ¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿 ) ) |
6 |
|
elnn0z |
⊢ ( 𝐿 ∈ ℕ0 ↔ ( 𝐿 ∈ ℤ ∧ 0 ≤ 𝐿 ) ) |
7 |
5 6
|
xchnxbir |
⊢ ( ¬ 𝐿 ∈ ℕ0 ↔ ( ¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿 ) ) |
8 |
4 7
|
orbi12i |
⊢ ( ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ) ↔ ( ( ¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹 ) ∨ ( ¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿 ) ) ) |
9 |
|
or4 |
⊢ ( ( ( ¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹 ) ∨ ( ¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿 ) ) ↔ ( ( ¬ 𝐹 ∈ ℤ ∨ ¬ 𝐿 ∈ ℤ ) ∨ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) ) |
10 |
|
ianor |
⊢ ( ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ↔ ( ¬ 𝐹 ∈ ℤ ∨ ¬ 𝐿 ∈ ℤ ) ) |
11 |
10
|
bicomi |
⊢ ( ( ¬ 𝐹 ∈ ℤ ∨ ¬ 𝐿 ∈ ℤ ) ↔ ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) |
12 |
11
|
orbi1i |
⊢ ( ( ( ¬ 𝐹 ∈ ℤ ∨ ¬ 𝐿 ∈ ℤ ) ∨ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) ↔ ( ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∨ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) ) |
13 |
9 12
|
bitri |
⊢ ( ( ( ¬ 𝐹 ∈ ℤ ∨ ¬ 0 ≤ 𝐹 ) ∨ ( ¬ 𝐿 ∈ ℤ ∨ ¬ 0 ≤ 𝐿 ) ) ↔ ( ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∨ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) ) |
14 |
8 13
|
bitri |
⊢ ( ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ) ↔ ( ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∨ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) ) |
15 |
1 14
|
bitri |
⊢ ( ¬ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ↔ ( ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∨ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) ) |
16 |
|
swrdnznd |
⊢ ( ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) |
17 |
16
|
a1d |
⊢ ( ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
18 |
|
notnotb |
⊢ ( ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ↔ ¬ ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) |
19 |
|
zre |
⊢ ( 𝐹 ∈ ℤ → 𝐹 ∈ ℝ ) |
20 |
|
0red |
⊢ ( 𝐹 ∈ ℤ → 0 ∈ ℝ ) |
21 |
19 20
|
jca |
⊢ ( 𝐹 ∈ ℤ → ( 𝐹 ∈ ℝ ∧ 0 ∈ ℝ ) ) |
22 |
21
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐹 ∈ ℝ ∧ 0 ∈ ℝ ) ) |
23 |
|
ltnle |
⊢ ( ( 𝐹 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐹 < 0 ↔ ¬ 0 ≤ 𝐹 ) ) |
24 |
22 23
|
syl |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐹 < 0 ↔ ¬ 0 ≤ 𝐹 ) ) |
25 |
|
orc |
⊢ ( 𝐹 < 0 → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ) |
26 |
24 25
|
syl6bir |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ¬ 0 ≤ 𝐹 → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ) ) |
27 |
26
|
com12 |
⊢ ( ¬ 0 ≤ 𝐹 → ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ) ) |
28 |
|
notnotb |
⊢ ( 0 ≤ 𝐹 ↔ ¬ ¬ 0 ≤ 𝐹 ) |
29 |
28
|
a1i |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 0 ≤ 𝐹 ↔ ¬ ¬ 0 ≤ 𝐹 ) ) |
30 |
|
zre |
⊢ ( 𝐿 ∈ ℤ → 𝐿 ∈ ℝ ) |
31 |
|
0red |
⊢ ( 𝐿 ∈ ℤ → 0 ∈ ℝ ) |
32 |
30 31
|
jca |
⊢ ( 𝐿 ∈ ℤ → ( 𝐿 ∈ ℝ ∧ 0 ∈ ℝ ) ) |
33 |
32
|
3ad2ant3 |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐿 ∈ ℝ ∧ 0 ∈ ℝ ) ) |
34 |
|
ltnle |
⊢ ( ( 𝐿 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐿 < 0 ↔ ¬ 0 ≤ 𝐿 ) ) |
35 |
33 34
|
syl |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐿 < 0 ↔ ¬ 0 ≤ 𝐿 ) ) |
36 |
29 35
|
anbi12d |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( 0 ≤ 𝐹 ∧ 𝐿 < 0 ) ↔ ( ¬ ¬ 0 ≤ 𝐹 ∧ ¬ 0 ≤ 𝐿 ) ) ) |
37 |
30
|
3ad2ant3 |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → 𝐿 ∈ ℝ ) |
38 |
|
0red |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → 0 ∈ ℝ ) |
39 |
19
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → 𝐹 ∈ ℝ ) |
40 |
|
ltleletr |
⊢ ( ( 𝐿 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐹 ∈ ℝ ) → ( ( 𝐿 < 0 ∧ 0 ≤ 𝐹 ) → 𝐿 ≤ 𝐹 ) ) |
41 |
37 38 39 40
|
syl3anc |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( 𝐿 < 0 ∧ 0 ≤ 𝐹 ) → 𝐿 ≤ 𝐹 ) ) |
42 |
|
olc |
⊢ ( 𝐿 ≤ 𝐹 → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ) |
43 |
41 42
|
syl6 |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( 𝐿 < 0 ∧ 0 ≤ 𝐹 ) → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ) ) |
44 |
43
|
ancomsd |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( 0 ≤ 𝐹 ∧ 𝐿 < 0 ) → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ) ) |
45 |
36 44
|
sylbird |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( ¬ ¬ 0 ≤ 𝐹 ∧ ¬ 0 ≤ 𝐿 ) → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ) ) |
46 |
45
|
com12 |
⊢ ( ( ¬ ¬ 0 ≤ 𝐹 ∧ ¬ 0 ≤ 𝐿 ) → ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ) ) |
47 |
27 46
|
jaoi3 |
⊢ ( ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) → ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ) ) |
48 |
47
|
impcom |
⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ) |
49 |
48
|
orcd |
⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) → ( ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ∨ ( ♯ ‘ 𝑆 ) < 𝐿 ) ) |
50 |
|
df-3or |
⊢ ( ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ ( ♯ ‘ 𝑆 ) < 𝐿 ) ↔ ( ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ) ∨ ( ♯ ‘ 𝑆 ) < 𝐿 ) ) |
51 |
49 50
|
sylibr |
⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ ( ♯ ‘ 𝑆 ) < 𝐿 ) ) |
52 |
|
swrdnd |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ ( ♯ ‘ 𝑆 ) < 𝐿 ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
53 |
52
|
imp |
⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ ( ♯ ‘ 𝑆 ) < 𝐿 ) ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) |
54 |
51 53
|
syldan |
⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) |
55 |
54
|
ex |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
56 |
55
|
3expb |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → ( ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
57 |
56
|
expcom |
⊢ ( ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑆 ∈ Word 𝑉 → ( ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
58 |
57
|
com23 |
⊢ ( ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
59 |
18 58
|
sylbir |
⊢ ( ¬ ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
60 |
59
|
imp |
⊢ ( ( ¬ ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∧ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
61 |
17 60
|
jaoi3 |
⊢ ( ( ¬ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ∨ ( ¬ 0 ≤ 𝐹 ∨ ¬ 0 ≤ 𝐿 ) ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
62 |
15 61
|
sylbi |
⊢ ( ¬ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
63 |
62
|
impcom |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ¬ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) |