| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ianor |
⊢ ( ¬ ( 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ↔ ( ¬ 𝐹 ∈ ( 0 ... 𝐿 ) ∨ ¬ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) |
| 2 |
|
3ianor |
⊢ ( ¬ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ↔ ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿 ) ) |
| 3 |
|
elfz2nn0 |
⊢ ( 𝐹 ∈ ( 0 ... 𝐿 ) ↔ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ) |
| 4 |
2 3
|
xchnxbir |
⊢ ( ¬ 𝐹 ∈ ( 0 ... 𝐿 ) ↔ ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿 ) ) |
| 5 |
|
3ianor |
⊢ ( ¬ ( 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ↔ ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) |
| 6 |
|
elfz2nn0 |
⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ↔ ( 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) |
| 7 |
5 6
|
xchnxbir |
⊢ ( ¬ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ↔ ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) |
| 8 |
4 7
|
orbi12i |
⊢ ( ( ¬ 𝐹 ∈ ( 0 ... 𝐿 ) ∨ ¬ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ↔ ( ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿 ) ∨ ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) ) |
| 9 |
1 8
|
bitri |
⊢ ( ¬ ( 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ↔ ( ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿 ) ∨ ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) ) |
| 10 |
|
df-3or |
⊢ ( ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿 ) ↔ ( ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ) ∨ ¬ 𝐹 ≤ 𝐿 ) ) |
| 11 |
|
ianor |
⊢ ( ¬ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ↔ ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ) ) |
| 12 |
|
swrdnnn0nd |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ¬ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) |
| 13 |
12
|
expcom |
⊢ ( ¬ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 14 |
11 13
|
sylbir |
⊢ ( ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 15 |
|
anor |
⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ↔ ¬ ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ) ) |
| 16 |
|
nn0re |
⊢ ( 𝐿 ∈ ℕ0 → 𝐿 ∈ ℝ ) |
| 17 |
|
nn0re |
⊢ ( 𝐹 ∈ ℕ0 → 𝐹 ∈ ℝ ) |
| 18 |
|
ltnle |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ ) → ( 𝐿 < 𝐹 ↔ ¬ 𝐹 ≤ 𝐿 ) ) |
| 19 |
16 17 18
|
syl2anr |
⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝐿 < 𝐹 ↔ ¬ 𝐹 ≤ 𝐿 ) ) |
| 20 |
|
nn0z |
⊢ ( 𝐹 ∈ ℕ0 → 𝐹 ∈ ℤ ) |
| 21 |
|
nn0z |
⊢ ( 𝐿 ∈ ℕ0 → 𝐿 ∈ ℤ ) |
| 22 |
20 21
|
anim12i |
⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) |
| 23 |
22
|
anim2i |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) ) |
| 24 |
|
3anass |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ↔ ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) ) |
| 25 |
23 24
|
sylibr |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) |
| 26 |
25
|
adantr |
⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝐿 < 𝐹 ) → ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) |
| 27 |
17 16
|
anim12ci |
⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ ) ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ ) ) |
| 29 |
|
ltle |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ ) → ( 𝐿 < 𝐹 → 𝐿 ≤ 𝐹 ) ) |
| 30 |
28 29
|
syl |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝐿 < 𝐹 → 𝐿 ≤ 𝐹 ) ) |
| 31 |
30
|
imp |
⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝐿 < 𝐹 ) → 𝐿 ≤ 𝐹 ) |
| 32 |
31
|
3mix2d |
⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝐿 < 𝐹 ) → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ ( ♯ ‘ 𝑆 ) < 𝐿 ) ) |
| 33 |
|
swrdnd |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ ( ♯ ‘ 𝑆 ) < 𝐿 ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 34 |
26 32 33
|
sylc |
⊢ ( ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝐿 < 𝐹 ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) |
| 35 |
34
|
ex |
⊢ ( ( 𝑆 ∈ Word 𝑉 ∧ ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝐿 < 𝐹 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 36 |
35
|
expcom |
⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝐿 < 𝐹 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 37 |
36
|
com23 |
⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝐿 < 𝐹 → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 38 |
19 37
|
sylbird |
⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( ¬ 𝐹 ≤ 𝐿 → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 39 |
15 38
|
sylbir |
⊢ ( ¬ ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ) → ( ¬ 𝐹 ≤ 𝐿 → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 40 |
39
|
imp |
⊢ ( ( ¬ ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ) ∧ ¬ 𝐹 ≤ 𝐿 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 41 |
14 40
|
jaoi3 |
⊢ ( ( ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ) ∨ ¬ 𝐹 ≤ 𝐿 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 42 |
10 41
|
sylbi |
⊢ ( ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 43 |
|
3anor |
⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ↔ ¬ ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿 ) ) |
| 44 |
|
pm2.24 |
⊢ ( 𝐿 ∈ ℕ0 → ( ¬ 𝐿 ∈ ℕ0 → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 45 |
44
|
3ad2ant2 |
⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) → ( ¬ 𝐿 ∈ ℕ0 → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 46 |
45
|
com12 |
⊢ ( ¬ 𝐿 ∈ ℕ0 → ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 47 |
|
pm2.24 |
⊢ ( ( ♯ ‘ 𝑆 ) ∈ ℕ0 → ( ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 48 |
|
lencl |
⊢ ( 𝑆 ∈ Word 𝑉 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) |
| 49 |
47 48
|
syl11 |
⊢ ( ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 50 |
49
|
a1d |
⊢ ( ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 → ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 51 |
48
|
nn0red |
⊢ ( 𝑆 ∈ Word 𝑉 → ( ♯ ‘ 𝑆 ) ∈ ℝ ) |
| 52 |
16
|
3ad2ant2 |
⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) → 𝐿 ∈ ℝ ) |
| 53 |
|
ltnle |
⊢ ( ( ( ♯ ‘ 𝑆 ) ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( ( ♯ ‘ 𝑆 ) < 𝐿 ↔ ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) |
| 54 |
51 52 53
|
syl2anr |
⊢ ( ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ∧ 𝑆 ∈ Word 𝑉 ) → ( ( ♯ ‘ 𝑆 ) < 𝐿 ↔ ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) |
| 55 |
|
simpr |
⊢ ( ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ∧ 𝑆 ∈ Word 𝑉 ) → 𝑆 ∈ Word 𝑉 ) |
| 56 |
20
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) → 𝐹 ∈ ℤ ) |
| 57 |
56
|
adantr |
⊢ ( ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ∧ 𝑆 ∈ Word 𝑉 ) → 𝐹 ∈ ℤ ) |
| 58 |
21
|
3ad2ant2 |
⊢ ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) → 𝐿 ∈ ℤ ) |
| 59 |
58
|
adantr |
⊢ ( ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ∧ 𝑆 ∈ Word 𝑉 ) → 𝐿 ∈ ℤ ) |
| 60 |
55 57 59
|
3jca |
⊢ ( ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ∧ 𝑆 ∈ Word 𝑉 ) → ( 𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) |
| 61 |
|
3mix3 |
⊢ ( ( ♯ ‘ 𝑆 ) < 𝐿 → ( 𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ ( ♯ ‘ 𝑆 ) < 𝐿 ) ) |
| 62 |
60 61 33
|
syl2im |
⊢ ( ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ∧ 𝑆 ∈ Word 𝑉 ) → ( ( ♯ ‘ 𝑆 ) < 𝐿 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 63 |
54 62
|
sylbird |
⊢ ( ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ∧ 𝑆 ∈ Word 𝑉 ) → ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 64 |
63
|
com12 |
⊢ ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) → ( ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) ∧ 𝑆 ∈ Word 𝑉 ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 65 |
64
|
expd |
⊢ ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) → ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 66 |
46 50 65
|
3jaoi |
⊢ ( ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( ( 𝐹 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ∧ 𝐹 ≤ 𝐿 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 67 |
43 66
|
biimtrrid |
⊢ ( ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) → ( ¬ ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿 ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) ) |
| 68 |
67
|
impcom |
⊢ ( ( ¬ ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿 ) ∧ ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 69 |
42 68
|
jaoi3 |
⊢ ( ( ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿 ) ∨ ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 ∈ Word 𝑉 → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 70 |
69
|
com12 |
⊢ ( 𝑆 ∈ Word 𝑉 → ( ( ( ¬ 𝐹 ∈ ℕ0 ∨ ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐹 ≤ 𝐿 ) ∨ ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |
| 71 |
9 70
|
biimtrid |
⊢ ( 𝑆 ∈ Word 𝑉 → ( ¬ ( 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ∅ ) ) |