Description: Lemma for theorems about Petersen graphs. (Contributed by AV, 10-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pglem | |- 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ex | |- 2 e. _V |
|
| 2 | 1 | prid2 | |- 2 e. { 1 , 2 } |
| 3 | fzo13pr | |- ( 1 ..^ 3 ) = { 1 , 2 } |
|
| 4 | 2 3 | eleqtrri | |- 2 e. ( 1 ..^ 3 ) |
| 5 | ceil5half3 | |- ( |^ ` ( 5 / 2 ) ) = 3 |
|
| 6 | 5 | oveq2i | |- ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) = ( 1 ..^ 3 ) |
| 7 | 4 6 | eleqtrri | |- 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |