Step |
Hyp |
Ref |
Expression |
1 |
|
5re |
|- 5 e. RR |
2 |
|
2rp |
|- 2 e. RR+ |
3 |
|
ceildivmod |
|- ( ( 5 e. RR /\ 2 e. RR+ ) -> ( |^ ` ( 5 / 2 ) ) = ( ( 5 + ( ( 2 - 5 ) mod 2 ) ) / 2 ) ) |
4 |
1 2 3
|
mp2an |
|- ( |^ ` ( 5 / 2 ) ) = ( ( 5 + ( ( 2 - 5 ) mod 2 ) ) / 2 ) |
5 |
|
df-6 |
|- 6 = ( 5 + 1 ) |
6 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
7 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
8 |
7
|
oveq1i |
|- ( ( 2 x. 2 ) + ( 2 - 5 ) ) = ( 4 + ( 2 - 5 ) ) |
9 |
|
4cn |
|- 4 e. CC |
10 |
|
2cn |
|- 2 e. CC |
11 |
|
5cn |
|- 5 e. CC |
12 |
9 10 11
|
addsubassi |
|- ( ( 4 + 2 ) - 5 ) = ( 4 + ( 2 - 5 ) ) |
13 |
|
ax-1cn |
|- 1 e. CC |
14 |
|
4p2e6 |
|- ( 4 + 2 ) = 6 |
15 |
14 5
|
eqtri |
|- ( 4 + 2 ) = ( 5 + 1 ) |
16 |
11 13 15
|
mvrladdi |
|- ( ( 4 + 2 ) - 5 ) = 1 |
17 |
8 12 16
|
3eqtr2i |
|- ( ( 2 x. 2 ) + ( 2 - 5 ) ) = 1 |
18 |
17
|
oveq1i |
|- ( ( ( 2 x. 2 ) + ( 2 - 5 ) ) mod 2 ) = ( 1 mod 2 ) |
19 |
|
2re |
|- 2 e. RR |
20 |
19 1
|
resubcli |
|- ( 2 - 5 ) e. RR |
21 |
|
2z |
|- 2 e. ZZ |
22 |
|
muladdmod |
|- ( ( ( 2 - 5 ) e. RR /\ 2 e. RR+ /\ 2 e. ZZ ) -> ( ( ( 2 x. 2 ) + ( 2 - 5 ) ) mod 2 ) = ( ( 2 - 5 ) mod 2 ) ) |
23 |
20 2 21 22
|
mp3an |
|- ( ( ( 2 x. 2 ) + ( 2 - 5 ) ) mod 2 ) = ( ( 2 - 5 ) mod 2 ) |
24 |
|
1lt2 |
|- 1 < 2 |
25 |
|
1mod |
|- ( ( 2 e. RR /\ 1 < 2 ) -> ( 1 mod 2 ) = 1 ) |
26 |
19 24 25
|
mp2an |
|- ( 1 mod 2 ) = 1 |
27 |
18 23 26
|
3eqtr3i |
|- ( ( 2 - 5 ) mod 2 ) = 1 |
28 |
27
|
oveq2i |
|- ( 5 + ( ( 2 - 5 ) mod 2 ) ) = ( 5 + 1 ) |
29 |
5 6 28
|
3eqtr4ri |
|- ( 5 + ( ( 2 - 5 ) mod 2 ) ) = ( 3 x. 2 ) |
30 |
29
|
oveq1i |
|- ( ( 5 + ( ( 2 - 5 ) mod 2 ) ) / 2 ) = ( ( 3 x. 2 ) / 2 ) |
31 |
|
3cn |
|- 3 e. CC |
32 |
|
2ne0 |
|- 2 =/= 0 |
33 |
31 10 32
|
divcan4i |
|- ( ( 3 x. 2 ) / 2 ) = 3 |
34 |
30 33
|
eqtri |
|- ( ( 5 + ( ( 2 - 5 ) mod 2 ) ) / 2 ) = 3 |
35 |
4 34
|
eqtri |
|- ( |^ ` ( 5 / 2 ) ) = 3 |