| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
| 2 |
1
|
3ad2ant3 |
|- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> N e. RR ) |
| 3 |
|
rpre |
|- ( M e. RR+ -> M e. RR ) |
| 4 |
3
|
3ad2ant2 |
|- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> M e. RR ) |
| 5 |
2 4
|
remulcld |
|- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( N x. M ) e. RR ) |
| 6 |
|
simp1 |
|- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> A e. RR ) |
| 7 |
|
simp2 |
|- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> M e. RR+ ) |
| 8 |
|
modaddmod |
|- ( ( ( N x. M ) e. RR /\ A e. RR /\ M e. RR+ ) -> ( ( ( ( N x. M ) mod M ) + A ) mod M ) = ( ( ( N x. M ) + A ) mod M ) ) |
| 9 |
5 6 7 8
|
syl3anc |
|- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( ( ( ( N x. M ) mod M ) + A ) mod M ) = ( ( ( N x. M ) + A ) mod M ) ) |
| 10 |
|
pm3.22 |
|- ( ( M e. RR+ /\ N e. ZZ ) -> ( N e. ZZ /\ M e. RR+ ) ) |
| 11 |
10
|
3adant1 |
|- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( N e. ZZ /\ M e. RR+ ) ) |
| 12 |
|
mulmod0 |
|- ( ( N e. ZZ /\ M e. RR+ ) -> ( ( N x. M ) mod M ) = 0 ) |
| 13 |
11 12
|
syl |
|- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( ( N x. M ) mod M ) = 0 ) |
| 14 |
13
|
oveq1d |
|- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( ( ( N x. M ) mod M ) + A ) = ( 0 + A ) ) |
| 15 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 16 |
15
|
addlidd |
|- ( A e. RR -> ( 0 + A ) = A ) |
| 17 |
16
|
3ad2ant1 |
|- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( 0 + A ) = A ) |
| 18 |
14 17
|
eqtrd |
|- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( ( ( N x. M ) mod M ) + A ) = A ) |
| 19 |
18
|
oveq1d |
|- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( ( ( ( N x. M ) mod M ) + A ) mod M ) = ( A mod M ) ) |
| 20 |
9 19
|
eqtr3d |
|- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( ( ( N x. M ) + A ) mod M ) = ( A mod M ) ) |