Metamath Proof Explorer


Theorem muladdmod

Description: A real number is the sum of the number and a multiple of a positive real number modulo the positive real number. (Contributed by AV, 7-Sep-2025)

Ref Expression
Assertion muladdmod A M + N N M + A mod M = A mod M

Proof

Step Hyp Ref Expression
1 zre N N
2 1 3ad2ant3 A M + N N
3 rpre M + M
4 3 3ad2ant2 A M + N M
5 2 4 remulcld A M + N N M
6 simp1 A M + N A
7 simp2 A M + N M +
8 modaddmod N M A M + N M mod M + A mod M = N M + A mod M
9 5 6 7 8 syl3anc A M + N N M mod M + A mod M = N M + A mod M
10 pm3.22 M + N N M +
11 10 3adant1 A M + N N M +
12 mulmod0 N M + N M mod M = 0
13 11 12 syl A M + N N M mod M = 0
14 13 oveq1d A M + N N M mod M + A = 0 + A
15 recn A A
16 15 addlidd A 0 + A = A
17 16 3ad2ant1 A M + N 0 + A = A
18 14 17 eqtrd A M + N N M mod M + A = A
19 18 oveq1d A M + N N M mod M + A mod M = A mod M
20 9 19 eqtr3d A M + N N M + A mod M = A mod M