| Step |
Hyp |
Ref |
Expression |
| 1 |
|
5re |
⊢ 5 ∈ ℝ |
| 2 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 3 |
|
ceildivmod |
⊢ ( ( 5 ∈ ℝ ∧ 2 ∈ ℝ+ ) → ( ⌈ ‘ ( 5 / 2 ) ) = ( ( 5 + ( ( 2 − 5 ) mod 2 ) ) / 2 ) ) |
| 4 |
1 2 3
|
mp2an |
⊢ ( ⌈ ‘ ( 5 / 2 ) ) = ( ( 5 + ( ( 2 − 5 ) mod 2 ) ) / 2 ) |
| 5 |
|
df-6 |
⊢ 6 = ( 5 + 1 ) |
| 6 |
|
3t2e6 |
⊢ ( 3 · 2 ) = 6 |
| 7 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
| 8 |
7
|
oveq1i |
⊢ ( ( 2 · 2 ) + ( 2 − 5 ) ) = ( 4 + ( 2 − 5 ) ) |
| 9 |
|
4cn |
⊢ 4 ∈ ℂ |
| 10 |
|
2cn |
⊢ 2 ∈ ℂ |
| 11 |
|
5cn |
⊢ 5 ∈ ℂ |
| 12 |
9 10 11
|
addsubassi |
⊢ ( ( 4 + 2 ) − 5 ) = ( 4 + ( 2 − 5 ) ) |
| 13 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 14 |
|
4p2e6 |
⊢ ( 4 + 2 ) = 6 |
| 15 |
14 5
|
eqtri |
⊢ ( 4 + 2 ) = ( 5 + 1 ) |
| 16 |
11 13 15
|
mvrladdi |
⊢ ( ( 4 + 2 ) − 5 ) = 1 |
| 17 |
8 12 16
|
3eqtr2i |
⊢ ( ( 2 · 2 ) + ( 2 − 5 ) ) = 1 |
| 18 |
17
|
oveq1i |
⊢ ( ( ( 2 · 2 ) + ( 2 − 5 ) ) mod 2 ) = ( 1 mod 2 ) |
| 19 |
|
2re |
⊢ 2 ∈ ℝ |
| 20 |
19 1
|
resubcli |
⊢ ( 2 − 5 ) ∈ ℝ |
| 21 |
|
2z |
⊢ 2 ∈ ℤ |
| 22 |
|
muladdmod |
⊢ ( ( ( 2 − 5 ) ∈ ℝ ∧ 2 ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( ( ( 2 · 2 ) + ( 2 − 5 ) ) mod 2 ) = ( ( 2 − 5 ) mod 2 ) ) |
| 23 |
20 2 21 22
|
mp3an |
⊢ ( ( ( 2 · 2 ) + ( 2 − 5 ) ) mod 2 ) = ( ( 2 − 5 ) mod 2 ) |
| 24 |
|
1lt2 |
⊢ 1 < 2 |
| 25 |
|
1mod |
⊢ ( ( 2 ∈ ℝ ∧ 1 < 2 ) → ( 1 mod 2 ) = 1 ) |
| 26 |
19 24 25
|
mp2an |
⊢ ( 1 mod 2 ) = 1 |
| 27 |
18 23 26
|
3eqtr3i |
⊢ ( ( 2 − 5 ) mod 2 ) = 1 |
| 28 |
27
|
oveq2i |
⊢ ( 5 + ( ( 2 − 5 ) mod 2 ) ) = ( 5 + 1 ) |
| 29 |
5 6 28
|
3eqtr4ri |
⊢ ( 5 + ( ( 2 − 5 ) mod 2 ) ) = ( 3 · 2 ) |
| 30 |
29
|
oveq1i |
⊢ ( ( 5 + ( ( 2 − 5 ) mod 2 ) ) / 2 ) = ( ( 3 · 2 ) / 2 ) |
| 31 |
|
3cn |
⊢ 3 ∈ ℂ |
| 32 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 33 |
31 10 32
|
divcan4i |
⊢ ( ( 3 · 2 ) / 2 ) = 3 |
| 34 |
30 33
|
eqtri |
⊢ ( ( 5 + ( ( 2 − 5 ) mod 2 ) ) / 2 ) = 3 |
| 35 |
4 34
|
eqtri |
⊢ ( ⌈ ‘ ( 5 / 2 ) ) = 3 |