| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rerpdivcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 2 |
|
ceilval |
⊢ ( ( 𝐴 / 𝐵 ) ∈ ℝ → ( ⌈ ‘ ( 𝐴 / 𝐵 ) ) = - ( ⌊ ‘ - ( 𝐴 / 𝐵 ) ) ) |
| 3 |
1 2
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ⌈ ‘ ( 𝐴 / 𝐵 ) ) = - ( ⌊ ‘ - ( 𝐴 / 𝐵 ) ) ) |
| 4 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 6 |
|
rpcn |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℂ ) |
| 8 |
|
rpne0 |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ≠ 0 ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ≠ 0 ) |
| 10 |
5 7 9
|
divnegd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → - ( 𝐴 / 𝐵 ) = ( - 𝐴 / 𝐵 ) ) |
| 11 |
10
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ⌊ ‘ - ( 𝐴 / 𝐵 ) ) = ( ⌊ ‘ ( - 𝐴 / 𝐵 ) ) ) |
| 12 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
| 13 |
|
fldivmod |
⊢ ( ( - 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ⌊ ‘ ( - 𝐴 / 𝐵 ) ) = ( ( - 𝐴 − ( - 𝐴 mod 𝐵 ) ) / 𝐵 ) ) |
| 14 |
12 13
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ⌊ ‘ ( - 𝐴 / 𝐵 ) ) = ( ( - 𝐴 − ( - 𝐴 mod 𝐵 ) ) / 𝐵 ) ) |
| 15 |
11 14
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ⌊ ‘ - ( 𝐴 / 𝐵 ) ) = ( ( - 𝐴 − ( - 𝐴 mod 𝐵 ) ) / 𝐵 ) ) |
| 16 |
15
|
negeqd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → - ( ⌊ ‘ - ( 𝐴 / 𝐵 ) ) = - ( ( - 𝐴 − ( - 𝐴 mod 𝐵 ) ) / 𝐵 ) ) |
| 17 |
12
|
recnd |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℂ ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → - 𝐴 ∈ ℂ ) |
| 19 |
|
modcl |
⊢ ( ( - 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( - 𝐴 mod 𝐵 ) ∈ ℝ ) |
| 20 |
12 19
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( - 𝐴 mod 𝐵 ) ∈ ℝ ) |
| 21 |
20
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( - 𝐴 mod 𝐵 ) ∈ ℂ ) |
| 22 |
18 21
|
subcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( - 𝐴 − ( - 𝐴 mod 𝐵 ) ) ∈ ℂ ) |
| 23 |
22 7 9
|
divnegd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → - ( ( - 𝐴 − ( - 𝐴 mod 𝐵 ) ) / 𝐵 ) = ( - ( - 𝐴 − ( - 𝐴 mod 𝐵 ) ) / 𝐵 ) ) |
| 24 |
16 23
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → - ( ⌊ ‘ - ( 𝐴 / 𝐵 ) ) = ( - ( - 𝐴 − ( - 𝐴 mod 𝐵 ) ) / 𝐵 ) ) |
| 25 |
18 21
|
negsubdid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → - ( - 𝐴 − ( - 𝐴 mod 𝐵 ) ) = ( - - 𝐴 + ( - 𝐴 mod 𝐵 ) ) ) |
| 26 |
4
|
negnegd |
⊢ ( 𝐴 ∈ ℝ → - - 𝐴 = 𝐴 ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → - - 𝐴 = 𝐴 ) |
| 28 |
27
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( - - 𝐴 + ( - 𝐴 mod 𝐵 ) ) = ( 𝐴 + ( - 𝐴 mod 𝐵 ) ) ) |
| 29 |
|
negmod |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( - 𝐴 mod 𝐵 ) = ( ( 𝐵 − 𝐴 ) mod 𝐵 ) ) |
| 30 |
29
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 + ( - 𝐴 mod 𝐵 ) ) = ( 𝐴 + ( ( 𝐵 − 𝐴 ) mod 𝐵 ) ) ) |
| 31 |
25 28 30
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → - ( - 𝐴 − ( - 𝐴 mod 𝐵 ) ) = ( 𝐴 + ( ( 𝐵 − 𝐴 ) mod 𝐵 ) ) ) |
| 32 |
31
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( - ( - 𝐴 − ( - 𝐴 mod 𝐵 ) ) / 𝐵 ) = ( ( 𝐴 + ( ( 𝐵 − 𝐴 ) mod 𝐵 ) ) / 𝐵 ) ) |
| 33 |
3 24 32
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ⌈ ‘ ( 𝐴 / 𝐵 ) ) = ( ( 𝐴 + ( ( 𝐵 − 𝐴 ) mod 𝐵 ) ) / 𝐵 ) ) |