Step |
Hyp |
Ref |
Expression |
1 |
|
rerpdivcl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) |
2 |
|
ceilval |
|- ( ( A / B ) e. RR -> ( |^ ` ( A / B ) ) = -u ( |_ ` -u ( A / B ) ) ) |
3 |
1 2
|
syl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( |^ ` ( A / B ) ) = -u ( |_ ` -u ( A / B ) ) ) |
4 |
|
recn |
|- ( A e. RR -> A e. CC ) |
5 |
4
|
adantr |
|- ( ( A e. RR /\ B e. RR+ ) -> A e. CC ) |
6 |
|
rpcn |
|- ( B e. RR+ -> B e. CC ) |
7 |
6
|
adantl |
|- ( ( A e. RR /\ B e. RR+ ) -> B e. CC ) |
8 |
|
rpne0 |
|- ( B e. RR+ -> B =/= 0 ) |
9 |
8
|
adantl |
|- ( ( A e. RR /\ B e. RR+ ) -> B =/= 0 ) |
10 |
5 7 9
|
divnegd |
|- ( ( A e. RR /\ B e. RR+ ) -> -u ( A / B ) = ( -u A / B ) ) |
11 |
10
|
fveq2d |
|- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` -u ( A / B ) ) = ( |_ ` ( -u A / B ) ) ) |
12 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
13 |
|
fldivmod |
|- ( ( -u A e. RR /\ B e. RR+ ) -> ( |_ ` ( -u A / B ) ) = ( ( -u A - ( -u A mod B ) ) / B ) ) |
14 |
12 13
|
sylan |
|- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( -u A / B ) ) = ( ( -u A - ( -u A mod B ) ) / B ) ) |
15 |
11 14
|
eqtrd |
|- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` -u ( A / B ) ) = ( ( -u A - ( -u A mod B ) ) / B ) ) |
16 |
15
|
negeqd |
|- ( ( A e. RR /\ B e. RR+ ) -> -u ( |_ ` -u ( A / B ) ) = -u ( ( -u A - ( -u A mod B ) ) / B ) ) |
17 |
12
|
recnd |
|- ( A e. RR -> -u A e. CC ) |
18 |
17
|
adantr |
|- ( ( A e. RR /\ B e. RR+ ) -> -u A e. CC ) |
19 |
|
modcl |
|- ( ( -u A e. RR /\ B e. RR+ ) -> ( -u A mod B ) e. RR ) |
20 |
12 19
|
sylan |
|- ( ( A e. RR /\ B e. RR+ ) -> ( -u A mod B ) e. RR ) |
21 |
20
|
recnd |
|- ( ( A e. RR /\ B e. RR+ ) -> ( -u A mod B ) e. CC ) |
22 |
18 21
|
subcld |
|- ( ( A e. RR /\ B e. RR+ ) -> ( -u A - ( -u A mod B ) ) e. CC ) |
23 |
22 7 9
|
divnegd |
|- ( ( A e. RR /\ B e. RR+ ) -> -u ( ( -u A - ( -u A mod B ) ) / B ) = ( -u ( -u A - ( -u A mod B ) ) / B ) ) |
24 |
16 23
|
eqtrd |
|- ( ( A e. RR /\ B e. RR+ ) -> -u ( |_ ` -u ( A / B ) ) = ( -u ( -u A - ( -u A mod B ) ) / B ) ) |
25 |
18 21
|
negsubdid |
|- ( ( A e. RR /\ B e. RR+ ) -> -u ( -u A - ( -u A mod B ) ) = ( -u -u A + ( -u A mod B ) ) ) |
26 |
4
|
negnegd |
|- ( A e. RR -> -u -u A = A ) |
27 |
26
|
adantr |
|- ( ( A e. RR /\ B e. RR+ ) -> -u -u A = A ) |
28 |
27
|
oveq1d |
|- ( ( A e. RR /\ B e. RR+ ) -> ( -u -u A + ( -u A mod B ) ) = ( A + ( -u A mod B ) ) ) |
29 |
|
negmod |
|- ( ( A e. RR /\ B e. RR+ ) -> ( -u A mod B ) = ( ( B - A ) mod B ) ) |
30 |
29
|
oveq2d |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A + ( -u A mod B ) ) = ( A + ( ( B - A ) mod B ) ) ) |
31 |
25 28 30
|
3eqtrd |
|- ( ( A e. RR /\ B e. RR+ ) -> -u ( -u A - ( -u A mod B ) ) = ( A + ( ( B - A ) mod B ) ) ) |
32 |
31
|
oveq1d |
|- ( ( A e. RR /\ B e. RR+ ) -> ( -u ( -u A - ( -u A mod B ) ) / B ) = ( ( A + ( ( B - A ) mod B ) ) / B ) ) |
33 |
3 24 32
|
3eqtrd |
|- ( ( A e. RR /\ B e. RR+ ) -> ( |^ ` ( A / B ) ) = ( ( A + ( ( B - A ) mod B ) ) / B ) ) |