Metamath Proof Explorer


Theorem ceildivmod

Description: Expressing the ceiling of a division by the modulo operator. (Contributed by AV, 7-Sep-2025)

Ref Expression
Assertion ceildivmod A B + A B = A + B A mod B B

Proof

Step Hyp Ref Expression
1 rerpdivcl A B + A B
2 ceilval A B A B = A B
3 1 2 syl A B + A B = A B
4 recn A A
5 4 adantr A B + A
6 rpcn B + B
7 6 adantl A B + B
8 rpne0 B + B 0
9 8 adantl A B + B 0
10 5 7 9 divnegd A B + A B = A B
11 10 fveq2d A B + A B = A B
12 renegcl A A
13 fldivmod A B + A B = - A - A mod B B
14 12 13 sylan A B + A B = - A - A mod B B
15 11 14 eqtrd A B + A B = - A - A mod B B
16 15 negeqd A B + A B = - A - A mod B B
17 12 recnd A A
18 17 adantr A B + A
19 modcl A B + A mod B
20 12 19 sylan A B + A mod B
21 20 recnd A B + A mod B
22 18 21 subcld A B + - A - A mod B
23 22 7 9 divnegd A B + - A - A mod B B = - A - A mod B B
24 16 23 eqtrd A B + A B = - A - A mod B B
25 18 21 negsubdid A B + - A - A mod B = - A + A mod B
26 4 negnegd A A = A
27 26 adantr A B + A = A
28 27 oveq1d A B + - A + A mod B = A + A mod B
29 negmod A B + A mod B = B A mod B
30 29 oveq2d A B + A + A mod B = A + B A mod B
31 25 28 30 3eqtrd A B + - A - A mod B = A + B A mod B
32 31 oveq1d A B + - A - A mod B B = A + B A mod B B
33 3 24 32 3eqtrd A B + A B = A + B A mod B B