| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rerpdivcl |
|
| 2 |
|
ceilval |
|
| 3 |
1 2
|
syl |
|
| 4 |
|
recn |
|
| 5 |
4
|
adantr |
|
| 6 |
|
rpcn |
|
| 7 |
6
|
adantl |
|
| 8 |
|
rpne0 |
|
| 9 |
8
|
adantl |
|
| 10 |
5 7 9
|
divnegd |
|
| 11 |
10
|
fveq2d |
|
| 12 |
|
renegcl |
|
| 13 |
|
fldivmod |
|
| 14 |
12 13
|
sylan |
|
| 15 |
11 14
|
eqtrd |
|
| 16 |
15
|
negeqd |
|
| 17 |
12
|
recnd |
|
| 18 |
17
|
adantr |
|
| 19 |
|
modcl |
|
| 20 |
12 19
|
sylan |
|
| 21 |
20
|
recnd |
|
| 22 |
18 21
|
subcld |
|
| 23 |
22 7 9
|
divnegd |
|
| 24 |
16 23
|
eqtrd |
|
| 25 |
18 21
|
negsubdid |
|
| 26 |
4
|
negnegd |
|
| 27 |
26
|
adantr |
|
| 28 |
27
|
oveq1d |
|
| 29 |
|
negmod |
|
| 30 |
29
|
oveq2d |
|
| 31 |
25 28 30
|
3eqtrd |
|
| 32 |
31
|
oveq1d |
|
| 33 |
3 24 32
|
3eqtrd |
|