Step |
Hyp |
Ref |
Expression |
1 |
|
rerpdivcl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) |
2 |
1
|
flcld |
|- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. ZZ ) |
3 |
2
|
zcnd |
|- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. CC ) |
4 |
|
rpcn |
|- ( B e. RR+ -> B e. CC ) |
5 |
4
|
adantl |
|- ( ( A e. RR /\ B e. RR+ ) -> B e. CC ) |
6 |
3 5
|
mulcld |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( |_ ` ( A / B ) ) x. B ) e. CC ) |
7 |
|
modcl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) e. RR ) |
8 |
7
|
recnd |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) e. CC ) |
9 |
6 8
|
pncand |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( ( ( |_ ` ( A / B ) ) x. B ) + ( A mod B ) ) - ( A mod B ) ) = ( ( |_ ` ( A / B ) ) x. B ) ) |
10 |
6 8
|
addcld |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( ( |_ ` ( A / B ) ) x. B ) + ( A mod B ) ) e. CC ) |
11 |
10 8
|
subcld |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( ( ( |_ ` ( A / B ) ) x. B ) + ( A mod B ) ) - ( A mod B ) ) e. CC ) |
12 |
|
rpne0 |
|- ( B e. RR+ -> B =/= 0 ) |
13 |
12
|
adantl |
|- ( ( A e. RR /\ B e. RR+ ) -> B =/= 0 ) |
14 |
11 3 5 13
|
divmul3d |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( ( ( ( ( |_ ` ( A / B ) ) x. B ) + ( A mod B ) ) - ( A mod B ) ) / B ) = ( |_ ` ( A / B ) ) <-> ( ( ( ( |_ ` ( A / B ) ) x. B ) + ( A mod B ) ) - ( A mod B ) ) = ( ( |_ ` ( A / B ) ) x. B ) ) ) |
15 |
9 14
|
mpbird |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( ( ( ( |_ ` ( A / B ) ) x. B ) + ( A mod B ) ) - ( A mod B ) ) / B ) = ( |_ ` ( A / B ) ) ) |
16 |
|
flpmodeq |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( ( |_ ` ( A / B ) ) x. B ) + ( A mod B ) ) = A ) |
17 |
16
|
oveq1d |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( ( ( |_ ` ( A / B ) ) x. B ) + ( A mod B ) ) - ( A mod B ) ) = ( A - ( A mod B ) ) ) |
18 |
17
|
oveq1d |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( ( ( ( |_ ` ( A / B ) ) x. B ) + ( A mod B ) ) - ( A mod B ) ) / B ) = ( ( A - ( A mod B ) ) / B ) ) |
19 |
15 18
|
eqtr3d |
|- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) = ( ( A - ( A mod B ) ) / B ) ) |