| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rerpdivcl |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) | 
						
							| 2 | 1 | flcld |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. ZZ ) | 
						
							| 3 | 2 | zcnd |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. CC ) | 
						
							| 4 |  | rpcn |  |-  ( B e. RR+ -> B e. CC ) | 
						
							| 5 | 4 | adantl |  |-  ( ( A e. RR /\ B e. RR+ ) -> B e. CC ) | 
						
							| 6 | 3 5 | mulcld |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( |_ ` ( A / B ) ) x. B ) e. CC ) | 
						
							| 7 |  | modcl |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) e. RR ) | 
						
							| 8 | 7 | recnd |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) e. CC ) | 
						
							| 9 | 6 8 | pncand |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( ( ( |_ ` ( A / B ) ) x. B ) + ( A mod B ) ) - ( A mod B ) ) = ( ( |_ ` ( A / B ) ) x. B ) ) | 
						
							| 10 | 6 8 | addcld |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( ( |_ ` ( A / B ) ) x. B ) + ( A mod B ) ) e. CC ) | 
						
							| 11 | 10 8 | subcld |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( ( ( |_ ` ( A / B ) ) x. B ) + ( A mod B ) ) - ( A mod B ) ) e. CC ) | 
						
							| 12 |  | rpne0 |  |-  ( B e. RR+ -> B =/= 0 ) | 
						
							| 13 | 12 | adantl |  |-  ( ( A e. RR /\ B e. RR+ ) -> B =/= 0 ) | 
						
							| 14 | 11 3 5 13 | divmul3d |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( ( ( ( ( |_ ` ( A / B ) ) x. B ) + ( A mod B ) ) - ( A mod B ) ) / B ) = ( |_ ` ( A / B ) ) <-> ( ( ( ( |_ ` ( A / B ) ) x. B ) + ( A mod B ) ) - ( A mod B ) ) = ( ( |_ ` ( A / B ) ) x. B ) ) ) | 
						
							| 15 | 9 14 | mpbird |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( ( ( ( |_ ` ( A / B ) ) x. B ) + ( A mod B ) ) - ( A mod B ) ) / B ) = ( |_ ` ( A / B ) ) ) | 
						
							| 16 |  | flpmodeq |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( ( |_ ` ( A / B ) ) x. B ) + ( A mod B ) ) = A ) | 
						
							| 17 | 16 | oveq1d |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( ( ( |_ ` ( A / B ) ) x. B ) + ( A mod B ) ) - ( A mod B ) ) = ( A - ( A mod B ) ) ) | 
						
							| 18 | 17 | oveq1d |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( ( ( ( |_ ` ( A / B ) ) x. B ) + ( A mod B ) ) - ( A mod B ) ) / B ) = ( ( A - ( A mod B ) ) / B ) ) | 
						
							| 19 | 15 18 | eqtr3d |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) = ( ( A - ( A mod B ) ) / B ) ) |