| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zre |  |-  ( A e. ZZ -> A e. RR ) | 
						
							| 2 |  | nnrp |  |-  ( N e. NN -> N e. RR+ ) | 
						
							| 3 |  | mod0 |  |-  ( ( A e. RR /\ N e. RR+ ) -> ( ( A mod N ) = 0 <-> ( A / N ) e. ZZ ) ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( A e. ZZ /\ N e. NN ) -> ( ( A mod N ) = 0 <-> ( A / N ) e. ZZ ) ) | 
						
							| 5 |  | simpr |  |-  ( ( ( A e. ZZ /\ N e. NN ) /\ ( A / N ) e. ZZ ) -> ( A / N ) e. ZZ ) | 
						
							| 6 |  | oveq1 |  |-  ( x = ( A / N ) -> ( x x. N ) = ( ( A / N ) x. N ) ) | 
						
							| 7 | 6 | eqeq2d |  |-  ( x = ( A / N ) -> ( A = ( x x. N ) <-> A = ( ( A / N ) x. N ) ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ( ( A e. ZZ /\ N e. NN ) /\ ( A / N ) e. ZZ ) /\ x = ( A / N ) ) -> ( A = ( x x. N ) <-> A = ( ( A / N ) x. N ) ) ) | 
						
							| 9 |  | zcn |  |-  ( A e. ZZ -> A e. CC ) | 
						
							| 10 | 9 | adantr |  |-  ( ( A e. ZZ /\ N e. NN ) -> A e. CC ) | 
						
							| 11 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 12 | 11 | adantl |  |-  ( ( A e. ZZ /\ N e. NN ) -> N e. CC ) | 
						
							| 13 |  | nnne0 |  |-  ( N e. NN -> N =/= 0 ) | 
						
							| 14 | 13 | adantl |  |-  ( ( A e. ZZ /\ N e. NN ) -> N =/= 0 ) | 
						
							| 15 | 10 12 14 | divcan1d |  |-  ( ( A e. ZZ /\ N e. NN ) -> ( ( A / N ) x. N ) = A ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( A e. ZZ /\ N e. NN ) /\ ( A / N ) e. ZZ ) -> ( ( A / N ) x. N ) = A ) | 
						
							| 17 | 16 | eqcomd |  |-  ( ( ( A e. ZZ /\ N e. NN ) /\ ( A / N ) e. ZZ ) -> A = ( ( A / N ) x. N ) ) | 
						
							| 18 | 5 8 17 | rspcedvd |  |-  ( ( ( A e. ZZ /\ N e. NN ) /\ ( A / N ) e. ZZ ) -> E. x e. ZZ A = ( x x. N ) ) | 
						
							| 19 | 18 | ex |  |-  ( ( A e. ZZ /\ N e. NN ) -> ( ( A / N ) e. ZZ -> E. x e. ZZ A = ( x x. N ) ) ) | 
						
							| 20 | 4 19 | sylbid |  |-  ( ( A e. ZZ /\ N e. NN ) -> ( ( A mod N ) = 0 -> E. x e. ZZ A = ( x x. N ) ) ) |