| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
| 2 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
| 3 |
|
mod0 |
|- ( ( A e. RR /\ N e. RR+ ) -> ( ( A mod N ) = 0 <-> ( A / N ) e. ZZ ) ) |
| 4 |
1 2 3
|
syl2an |
|- ( ( A e. ZZ /\ N e. NN ) -> ( ( A mod N ) = 0 <-> ( A / N ) e. ZZ ) ) |
| 5 |
|
simpr |
|- ( ( ( A e. ZZ /\ N e. NN ) /\ ( A / N ) e. ZZ ) -> ( A / N ) e. ZZ ) |
| 6 |
|
oveq1 |
|- ( x = ( A / N ) -> ( x x. N ) = ( ( A / N ) x. N ) ) |
| 7 |
6
|
eqeq2d |
|- ( x = ( A / N ) -> ( A = ( x x. N ) <-> A = ( ( A / N ) x. N ) ) ) |
| 8 |
7
|
adantl |
|- ( ( ( ( A e. ZZ /\ N e. NN ) /\ ( A / N ) e. ZZ ) /\ x = ( A / N ) ) -> ( A = ( x x. N ) <-> A = ( ( A / N ) x. N ) ) ) |
| 9 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
| 10 |
9
|
adantr |
|- ( ( A e. ZZ /\ N e. NN ) -> A e. CC ) |
| 11 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 12 |
11
|
adantl |
|- ( ( A e. ZZ /\ N e. NN ) -> N e. CC ) |
| 13 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
| 14 |
13
|
adantl |
|- ( ( A e. ZZ /\ N e. NN ) -> N =/= 0 ) |
| 15 |
10 12 14
|
divcan1d |
|- ( ( A e. ZZ /\ N e. NN ) -> ( ( A / N ) x. N ) = A ) |
| 16 |
15
|
adantr |
|- ( ( ( A e. ZZ /\ N e. NN ) /\ ( A / N ) e. ZZ ) -> ( ( A / N ) x. N ) = A ) |
| 17 |
16
|
eqcomd |
|- ( ( ( A e. ZZ /\ N e. NN ) /\ ( A / N ) e. ZZ ) -> A = ( ( A / N ) x. N ) ) |
| 18 |
5 8 17
|
rspcedvd |
|- ( ( ( A e. ZZ /\ N e. NN ) /\ ( A / N ) e. ZZ ) -> E. x e. ZZ A = ( x x. N ) ) |
| 19 |
18
|
ex |
|- ( ( A e. ZZ /\ N e. NN ) -> ( ( A / N ) e. ZZ -> E. x e. ZZ A = ( x x. N ) ) ) |
| 20 |
4 19
|
sylbid |
|- ( ( A e. ZZ /\ N e. NN ) -> ( ( A mod N ) = 0 -> E. x e. ZZ A = ( x x. N ) ) ) |