| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zre | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | nnrp | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ+ ) | 
						
							| 3 |  | mod0 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℝ+ )  →  ( ( 𝐴  mod  𝑁 )  =  0  ↔  ( 𝐴  /  𝑁 )  ∈  ℤ ) ) | 
						
							| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝐴  mod  𝑁 )  =  0  ↔  ( 𝐴  /  𝑁 )  ∈  ℤ ) ) | 
						
							| 5 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝐴  /  𝑁 )  ∈  ℤ )  →  ( 𝐴  /  𝑁 )  ∈  ℤ ) | 
						
							| 6 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝐴  /  𝑁 )  →  ( 𝑥  ·  𝑁 )  =  ( ( 𝐴  /  𝑁 )  ·  𝑁 ) ) | 
						
							| 7 | 6 | eqeq2d | ⊢ ( 𝑥  =  ( 𝐴  /  𝑁 )  →  ( 𝐴  =  ( 𝑥  ·  𝑁 )  ↔  𝐴  =  ( ( 𝐴  /  𝑁 )  ·  𝑁 ) ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝐴  /  𝑁 )  ∈  ℤ )  ∧  𝑥  =  ( 𝐴  /  𝑁 ) )  →  ( 𝐴  =  ( 𝑥  ·  𝑁 )  ↔  𝐴  =  ( ( 𝐴  /  𝑁 )  ·  𝑁 ) ) ) | 
						
							| 9 |  | zcn | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℂ ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  𝐴  ∈  ℂ ) | 
						
							| 11 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℂ ) | 
						
							| 13 |  | nnne0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ≠  0 ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  𝑁  ≠  0 ) | 
						
							| 15 | 10 12 14 | divcan1d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝐴  /  𝑁 )  ·  𝑁 )  =  𝐴 ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝐴  /  𝑁 )  ∈  ℤ )  →  ( ( 𝐴  /  𝑁 )  ·  𝑁 )  =  𝐴 ) | 
						
							| 17 | 16 | eqcomd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝐴  /  𝑁 )  ∈  ℤ )  →  𝐴  =  ( ( 𝐴  /  𝑁 )  ·  𝑁 ) ) | 
						
							| 18 | 5 8 17 | rspcedvd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝐴  /  𝑁 )  ∈  ℤ )  →  ∃ 𝑥  ∈  ℤ 𝐴  =  ( 𝑥  ·  𝑁 ) ) | 
						
							| 19 | 18 | ex | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝐴  /  𝑁 )  ∈  ℤ  →  ∃ 𝑥  ∈  ℤ 𝐴  =  ( 𝑥  ·  𝑁 ) ) ) | 
						
							| 20 | 4 19 | sylbid | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝐴  mod  𝑁 )  =  0  →  ∃ 𝑥  ∈  ℤ 𝐴  =  ( 𝑥  ·  𝑁 ) ) ) |