| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zre |  |-  ( A e. ZZ -> A e. RR ) | 
						
							| 2 | 1 | adantr |  |-  ( ( A e. ZZ /\ N e. NN ) -> A e. RR ) | 
						
							| 3 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 4 | 3 | adantl |  |-  ( ( A e. ZZ /\ N e. NN ) -> N e. RR ) | 
						
							| 5 |  | nnne0 |  |-  ( N e. NN -> N =/= 0 ) | 
						
							| 6 | 5 | adantl |  |-  ( ( A e. ZZ /\ N e. NN ) -> N =/= 0 ) | 
						
							| 7 | 2 4 6 | redivcld |  |-  ( ( A e. ZZ /\ N e. NN ) -> ( A / N ) e. RR ) | 
						
							| 8 | 7 | flcld |  |-  ( ( A e. ZZ /\ N e. NN ) -> ( |_ ` ( A / N ) ) e. ZZ ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( A e. ZZ /\ N e. NN ) /\ ( A mod N ) =/= 0 ) -> ( |_ ` ( A / N ) ) e. ZZ ) | 
						
							| 10 |  | zmodfzo |  |-  ( ( A e. ZZ /\ N e. NN ) -> ( A mod N ) e. ( 0 ..^ N ) ) | 
						
							| 11 | 10 | anim1i |  |-  ( ( ( A e. ZZ /\ N e. NN ) /\ ( A mod N ) =/= 0 ) -> ( ( A mod N ) e. ( 0 ..^ N ) /\ ( A mod N ) =/= 0 ) ) | 
						
							| 12 |  | fzo1fzo0n0 |  |-  ( ( A mod N ) e. ( 1 ..^ N ) <-> ( ( A mod N ) e. ( 0 ..^ N ) /\ ( A mod N ) =/= 0 ) ) | 
						
							| 13 | 11 12 | sylibr |  |-  ( ( ( A e. ZZ /\ N e. NN ) /\ ( A mod N ) =/= 0 ) -> ( A mod N ) e. ( 1 ..^ N ) ) | 
						
							| 14 |  | nnrp |  |-  ( N e. NN -> N e. RR+ ) | 
						
							| 15 | 1 14 | anim12i |  |-  ( ( A e. ZZ /\ N e. NN ) -> ( A e. RR /\ N e. RR+ ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( A e. ZZ /\ N e. NN ) /\ ( A mod N ) =/= 0 ) -> ( A e. RR /\ N e. RR+ ) ) | 
						
							| 17 |  | flpmodeq |  |-  ( ( A e. RR /\ N e. RR+ ) -> ( ( ( |_ ` ( A / N ) ) x. N ) + ( A mod N ) ) = A ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( ( A e. ZZ /\ N e. NN ) /\ ( A mod N ) =/= 0 ) -> ( ( ( |_ ` ( A / N ) ) x. N ) + ( A mod N ) ) = A ) | 
						
							| 19 | 18 | eqcomd |  |-  ( ( ( A e. ZZ /\ N e. NN ) /\ ( A mod N ) =/= 0 ) -> A = ( ( ( |_ ` ( A / N ) ) x. N ) + ( A mod N ) ) ) | 
						
							| 20 |  | oveq1 |  |-  ( x = ( |_ ` ( A / N ) ) -> ( x x. N ) = ( ( |_ ` ( A / N ) ) x. N ) ) | 
						
							| 21 | 20 | oveq1d |  |-  ( x = ( |_ ` ( A / N ) ) -> ( ( x x. N ) + y ) = ( ( ( |_ ` ( A / N ) ) x. N ) + y ) ) | 
						
							| 22 | 21 | eqeq2d |  |-  ( x = ( |_ ` ( A / N ) ) -> ( A = ( ( x x. N ) + y ) <-> A = ( ( ( |_ ` ( A / N ) ) x. N ) + y ) ) ) | 
						
							| 23 |  | oveq2 |  |-  ( y = ( A mod N ) -> ( ( ( |_ ` ( A / N ) ) x. N ) + y ) = ( ( ( |_ ` ( A / N ) ) x. N ) + ( A mod N ) ) ) | 
						
							| 24 | 23 | eqeq2d |  |-  ( y = ( A mod N ) -> ( A = ( ( ( |_ ` ( A / N ) ) x. N ) + y ) <-> A = ( ( ( |_ ` ( A / N ) ) x. N ) + ( A mod N ) ) ) ) | 
						
							| 25 | 22 24 | rspc2ev |  |-  ( ( ( |_ ` ( A / N ) ) e. ZZ /\ ( A mod N ) e. ( 1 ..^ N ) /\ A = ( ( ( |_ ` ( A / N ) ) x. N ) + ( A mod N ) ) ) -> E. x e. ZZ E. y e. ( 1 ..^ N ) A = ( ( x x. N ) + y ) ) | 
						
							| 26 | 9 13 19 25 | syl3anc |  |-  ( ( ( A e. ZZ /\ N e. NN ) /\ ( A mod N ) =/= 0 ) -> E. x e. ZZ E. y e. ( 1 ..^ N ) A = ( ( x x. N ) + y ) ) | 
						
							| 27 | 26 | ex |  |-  ( ( A e. ZZ /\ N e. NN ) -> ( ( A mod N ) =/= 0 -> E. x e. ZZ E. y e. ( 1 ..^ N ) A = ( ( x x. N ) + y ) ) ) |