Step |
Hyp |
Ref |
Expression |
1 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
2 |
1
|
adantr |
|- ( ( A e. ZZ /\ N e. NN ) -> A e. RR ) |
3 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
4 |
3
|
adantl |
|- ( ( A e. ZZ /\ N e. NN ) -> N e. RR ) |
5 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
6 |
5
|
adantl |
|- ( ( A e. ZZ /\ N e. NN ) -> N =/= 0 ) |
7 |
2 4 6
|
redivcld |
|- ( ( A e. ZZ /\ N e. NN ) -> ( A / N ) e. RR ) |
8 |
7
|
flcld |
|- ( ( A e. ZZ /\ N e. NN ) -> ( |_ ` ( A / N ) ) e. ZZ ) |
9 |
8
|
adantr |
|- ( ( ( A e. ZZ /\ N e. NN ) /\ ( A mod N ) =/= 0 ) -> ( |_ ` ( A / N ) ) e. ZZ ) |
10 |
|
zmodfzo |
|- ( ( A e. ZZ /\ N e. NN ) -> ( A mod N ) e. ( 0 ..^ N ) ) |
11 |
10
|
anim1i |
|- ( ( ( A e. ZZ /\ N e. NN ) /\ ( A mod N ) =/= 0 ) -> ( ( A mod N ) e. ( 0 ..^ N ) /\ ( A mod N ) =/= 0 ) ) |
12 |
|
fzo1fzo0n0 |
|- ( ( A mod N ) e. ( 1 ..^ N ) <-> ( ( A mod N ) e. ( 0 ..^ N ) /\ ( A mod N ) =/= 0 ) ) |
13 |
11 12
|
sylibr |
|- ( ( ( A e. ZZ /\ N e. NN ) /\ ( A mod N ) =/= 0 ) -> ( A mod N ) e. ( 1 ..^ N ) ) |
14 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
15 |
1 14
|
anim12i |
|- ( ( A e. ZZ /\ N e. NN ) -> ( A e. RR /\ N e. RR+ ) ) |
16 |
15
|
adantr |
|- ( ( ( A e. ZZ /\ N e. NN ) /\ ( A mod N ) =/= 0 ) -> ( A e. RR /\ N e. RR+ ) ) |
17 |
|
flpmodeq |
|- ( ( A e. RR /\ N e. RR+ ) -> ( ( ( |_ ` ( A / N ) ) x. N ) + ( A mod N ) ) = A ) |
18 |
16 17
|
syl |
|- ( ( ( A e. ZZ /\ N e. NN ) /\ ( A mod N ) =/= 0 ) -> ( ( ( |_ ` ( A / N ) ) x. N ) + ( A mod N ) ) = A ) |
19 |
18
|
eqcomd |
|- ( ( ( A e. ZZ /\ N e. NN ) /\ ( A mod N ) =/= 0 ) -> A = ( ( ( |_ ` ( A / N ) ) x. N ) + ( A mod N ) ) ) |
20 |
|
oveq1 |
|- ( x = ( |_ ` ( A / N ) ) -> ( x x. N ) = ( ( |_ ` ( A / N ) ) x. N ) ) |
21 |
20
|
oveq1d |
|- ( x = ( |_ ` ( A / N ) ) -> ( ( x x. N ) + y ) = ( ( ( |_ ` ( A / N ) ) x. N ) + y ) ) |
22 |
21
|
eqeq2d |
|- ( x = ( |_ ` ( A / N ) ) -> ( A = ( ( x x. N ) + y ) <-> A = ( ( ( |_ ` ( A / N ) ) x. N ) + y ) ) ) |
23 |
|
oveq2 |
|- ( y = ( A mod N ) -> ( ( ( |_ ` ( A / N ) ) x. N ) + y ) = ( ( ( |_ ` ( A / N ) ) x. N ) + ( A mod N ) ) ) |
24 |
23
|
eqeq2d |
|- ( y = ( A mod N ) -> ( A = ( ( ( |_ ` ( A / N ) ) x. N ) + y ) <-> A = ( ( ( |_ ` ( A / N ) ) x. N ) + ( A mod N ) ) ) ) |
25 |
22 24
|
rspc2ev |
|- ( ( ( |_ ` ( A / N ) ) e. ZZ /\ ( A mod N ) e. ( 1 ..^ N ) /\ A = ( ( ( |_ ` ( A / N ) ) x. N ) + ( A mod N ) ) ) -> E. x e. ZZ E. y e. ( 1 ..^ N ) A = ( ( x x. N ) + y ) ) |
26 |
9 13 19 25
|
syl3anc |
|- ( ( ( A e. ZZ /\ N e. NN ) /\ ( A mod N ) =/= 0 ) -> E. x e. ZZ E. y e. ( 1 ..^ N ) A = ( ( x x. N ) + y ) ) |
27 |
26
|
ex |
|- ( ( A e. ZZ /\ N e. NN ) -> ( ( A mod N ) =/= 0 -> E. x e. ZZ E. y e. ( 1 ..^ N ) A = ( ( x x. N ) + y ) ) ) |