Description: Lemma for theorems about Petersen graphs. (Contributed by AV, 10-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pglem | ⊢ 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ex | ⊢ 2 ∈ V | |
| 2 | 1 | prid2 | ⊢ 2 ∈ { 1 , 2 } |
| 3 | fzo13pr | ⊢ ( 1 ..^ 3 ) = { 1 , 2 } | |
| 4 | 2 3 | eleqtrri | ⊢ 2 ∈ ( 1 ..^ 3 ) |
| 5 | ceil5half3 | ⊢ ( ⌈ ‘ ( 5 / 2 ) ) = 3 | |
| 6 | 5 | oveq2i | ⊢ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) = ( 1 ..^ 3 ) |
| 7 | 4 6 | eleqtrri | ⊢ 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) |