| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( 0 ..^ ( M x. N ) ) = ( 0 ..^ ( M x. N ) ) | 
						
							| 2 |  | eqid |  |-  ( ( 0 ..^ M ) X. ( 0 ..^ N ) ) = ( ( 0 ..^ M ) X. ( 0 ..^ N ) ) | 
						
							| 3 |  | eqid |  |-  ( x e. ( 0 ..^ ( M x. N ) ) |-> <. ( x mod M ) , ( x mod N ) >. ) = ( x e. ( 0 ..^ ( M x. N ) ) |-> <. ( x mod M ) , ( x mod N ) >. ) | 
						
							| 4 |  | id |  |-  ( ( M e. NN /\ N e. NN /\ ( M gcd N ) = 1 ) -> ( M e. NN /\ N e. NN /\ ( M gcd N ) = 1 ) ) | 
						
							| 5 |  | eqid |  |-  { y e. ( 0 ..^ M ) | ( y gcd M ) = 1 } = { y e. ( 0 ..^ M ) | ( y gcd M ) = 1 } | 
						
							| 6 |  | eqid |  |-  { y e. ( 0 ..^ N ) | ( y gcd N ) = 1 } = { y e. ( 0 ..^ N ) | ( y gcd N ) = 1 } | 
						
							| 7 |  | eqid |  |-  { y e. ( 0 ..^ ( M x. N ) ) | ( y gcd ( M x. N ) ) = 1 } = { y e. ( 0 ..^ ( M x. N ) ) | ( y gcd ( M x. N ) ) = 1 } | 
						
							| 8 | 1 2 3 4 5 6 7 | phimullem |  |-  ( ( M e. NN /\ N e. NN /\ ( M gcd N ) = 1 ) -> ( phi ` ( M x. N ) ) = ( ( phi ` M ) x. ( phi ` N ) ) ) |