| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( 0 ..^ ( 𝑀  ·  𝑁 ) )  =  ( 0 ..^ ( 𝑀  ·  𝑁 ) ) | 
						
							| 2 |  | eqid | ⊢ ( ( 0 ..^ 𝑀 )  ×  ( 0 ..^ 𝑁 ) )  =  ( ( 0 ..^ 𝑀 )  ×  ( 0 ..^ 𝑁 ) ) | 
						
							| 3 |  | eqid | ⊢ ( 𝑥  ∈  ( 0 ..^ ( 𝑀  ·  𝑁 ) )  ↦  〈 ( 𝑥  mod  𝑀 ) ,  ( 𝑥  mod  𝑁 ) 〉 )  =  ( 𝑥  ∈  ( 0 ..^ ( 𝑀  ·  𝑁 ) )  ↦  〈 ( 𝑥  mod  𝑀 ) ,  ( 𝑥  mod  𝑁 ) 〉 ) | 
						
							| 4 |  | id | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  ( 𝑀  gcd  𝑁 )  =  1 ) ) | 
						
							| 5 |  | eqid | ⊢ { 𝑦  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑦  gcd  𝑀 )  =  1 }  =  { 𝑦  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑦  gcd  𝑀 )  =  1 } | 
						
							| 6 |  | eqid | ⊢ { 𝑦  ∈  ( 0 ..^ 𝑁 )  ∣  ( 𝑦  gcd  𝑁 )  =  1 }  =  { 𝑦  ∈  ( 0 ..^ 𝑁 )  ∣  ( 𝑦  gcd  𝑁 )  =  1 } | 
						
							| 7 |  | eqid | ⊢ { 𝑦  ∈  ( 0 ..^ ( 𝑀  ·  𝑁 ) )  ∣  ( 𝑦  gcd  ( 𝑀  ·  𝑁 ) )  =  1 }  =  { 𝑦  ∈  ( 0 ..^ ( 𝑀  ·  𝑁 ) )  ∣  ( 𝑦  gcd  ( 𝑀  ·  𝑁 ) )  =  1 } | 
						
							| 8 | 1 2 3 4 5 6 7 | phimullem | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( ϕ ‘ ( 𝑀  ·  𝑁 ) )  =  ( ( ϕ ‘ 𝑀 )  ·  ( ϕ ‘ 𝑁 ) ) ) |