| Step | Hyp | Ref | Expression | 
						
							| 1 |  | crth.1 | ⊢ 𝑆  =  ( 0 ..^ ( 𝑀  ·  𝑁 ) ) | 
						
							| 2 |  | crth.2 | ⊢ 𝑇  =  ( ( 0 ..^ 𝑀 )  ×  ( 0 ..^ 𝑁 ) ) | 
						
							| 3 |  | crth.3 | ⊢ 𝐹  =  ( 𝑥  ∈  𝑆  ↦  〈 ( 𝑥  mod  𝑀 ) ,  ( 𝑥  mod  𝑁 ) 〉 ) | 
						
							| 4 |  | crth.4 | ⊢ ( 𝜑  →  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  ( 𝑀  gcd  𝑁 )  =  1 ) ) | 
						
							| 5 |  | phimul.4 | ⊢ 𝑈  =  { 𝑦  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑦  gcd  𝑀 )  =  1 } | 
						
							| 6 |  | phimul.5 | ⊢ 𝑉  =  { 𝑦  ∈  ( 0 ..^ 𝑁 )  ∣  ( 𝑦  gcd  𝑁 )  =  1 } | 
						
							| 7 |  | phimul.6 | ⊢ 𝑊  =  { 𝑦  ∈  𝑆  ∣  ( 𝑦  gcd  ( 𝑀  ·  𝑁 ) )  =  1 } | 
						
							| 8 |  | oveq1 | ⊢ ( 𝑦  =  𝑤  →  ( 𝑦  gcd  ( 𝑀  ·  𝑁 ) )  =  ( 𝑤  gcd  ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 9 | 8 | eqeq1d | ⊢ ( 𝑦  =  𝑤  →  ( ( 𝑦  gcd  ( 𝑀  ·  𝑁 ) )  =  1  ↔  ( 𝑤  gcd  ( 𝑀  ·  𝑁 ) )  =  1 ) ) | 
						
							| 10 | 9 7 | elrab2 | ⊢ ( 𝑤  ∈  𝑊  ↔  ( 𝑤  ∈  𝑆  ∧  ( 𝑤  gcd  ( 𝑀  ·  𝑁 ) )  =  1 ) ) | 
						
							| 11 | 10 | simplbi | ⊢ ( 𝑤  ∈  𝑊  →  𝑤  ∈  𝑆 ) | 
						
							| 12 |  | oveq1 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥  mod  𝑀 )  =  ( 𝑤  mod  𝑀 ) ) | 
						
							| 13 |  | oveq1 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥  mod  𝑁 )  =  ( 𝑤  mod  𝑁 ) ) | 
						
							| 14 | 12 13 | opeq12d | ⊢ ( 𝑥  =  𝑤  →  〈 ( 𝑥  mod  𝑀 ) ,  ( 𝑥  mod  𝑁 ) 〉  =  〈 ( 𝑤  mod  𝑀 ) ,  ( 𝑤  mod  𝑁 ) 〉 ) | 
						
							| 15 |  | opex | ⊢ 〈 ( 𝑤  mod  𝑀 ) ,  ( 𝑤  mod  𝑁 ) 〉  ∈  V | 
						
							| 16 | 14 3 15 | fvmpt | ⊢ ( 𝑤  ∈  𝑆  →  ( 𝐹 ‘ 𝑤 )  =  〈 ( 𝑤  mod  𝑀 ) ,  ( 𝑤  mod  𝑁 ) 〉 ) | 
						
							| 17 | 11 16 | syl | ⊢ ( 𝑤  ∈  𝑊  →  ( 𝐹 ‘ 𝑤 )  =  〈 ( 𝑤  mod  𝑀 ) ,  ( 𝑤  mod  𝑁 ) 〉 ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝐹 ‘ 𝑤 )  =  〈 ( 𝑤  mod  𝑀 ) ,  ( 𝑤  mod  𝑁 ) 〉 ) | 
						
							| 19 | 11 1 | eleqtrdi | ⊢ ( 𝑤  ∈  𝑊  →  𝑤  ∈  ( 0 ..^ ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  𝑤  ∈  ( 0 ..^ ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 21 |  | elfzoelz | ⊢ ( 𝑤  ∈  ( 0 ..^ ( 𝑀  ·  𝑁 ) )  →  𝑤  ∈  ℤ ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  𝑤  ∈  ℤ ) | 
						
							| 23 | 4 | simp1d | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  𝑀  ∈  ℕ ) | 
						
							| 25 |  | zmodfzo | ⊢ ( ( 𝑤  ∈  ℤ  ∧  𝑀  ∈  ℕ )  →  ( 𝑤  mod  𝑀 )  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 26 | 22 24 25 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝑤  mod  𝑀 )  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 27 |  | modgcd | ⊢ ( ( 𝑤  ∈  ℤ  ∧  𝑀  ∈  ℕ )  →  ( ( 𝑤  mod  𝑀 )  gcd  𝑀 )  =  ( 𝑤  gcd  𝑀 ) ) | 
						
							| 28 | 22 24 27 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( ( 𝑤  mod  𝑀 )  gcd  𝑀 )  =  ( 𝑤  gcd  𝑀 ) ) | 
						
							| 29 | 24 | nnzd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  𝑀  ∈  ℤ ) | 
						
							| 30 |  | gcddvds | ⊢ ( ( 𝑤  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( 𝑤  gcd  𝑀 )  ∥  𝑤  ∧  ( 𝑤  gcd  𝑀 )  ∥  𝑀 ) ) | 
						
							| 31 | 22 29 30 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( ( 𝑤  gcd  𝑀 )  ∥  𝑤  ∧  ( 𝑤  gcd  𝑀 )  ∥  𝑀 ) ) | 
						
							| 32 | 31 | simpld | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝑤  gcd  𝑀 )  ∥  𝑤 ) | 
						
							| 33 |  | nnne0 | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ≠  0 ) | 
						
							| 34 |  | simpr | ⊢ ( ( 𝑤  =  0  ∧  𝑀  =  0 )  →  𝑀  =  0 ) | 
						
							| 35 | 34 | necon3ai | ⊢ ( 𝑀  ≠  0  →  ¬  ( 𝑤  =  0  ∧  𝑀  =  0 ) ) | 
						
							| 36 | 24 33 35 | 3syl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ¬  ( 𝑤  =  0  ∧  𝑀  =  0 ) ) | 
						
							| 37 |  | gcdn0cl | ⊢ ( ( ( 𝑤  ∈  ℤ  ∧  𝑀  ∈  ℤ )  ∧  ¬  ( 𝑤  =  0  ∧  𝑀  =  0 ) )  →  ( 𝑤  gcd  𝑀 )  ∈  ℕ ) | 
						
							| 38 | 22 29 36 37 | syl21anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝑤  gcd  𝑀 )  ∈  ℕ ) | 
						
							| 39 | 38 | nnzd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝑤  gcd  𝑀 )  ∈  ℤ ) | 
						
							| 40 | 4 | simp2d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  𝑁  ∈  ℕ ) | 
						
							| 42 | 41 | nnzd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  𝑁  ∈  ℤ ) | 
						
							| 43 | 31 | simprd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝑤  gcd  𝑀 )  ∥  𝑀 ) | 
						
							| 44 | 39 29 42 43 | dvdsmultr1d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝑤  gcd  𝑀 )  ∥  ( 𝑀  ·  𝑁 ) ) | 
						
							| 45 | 24 41 | nnmulcld | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝑀  ·  𝑁 )  ∈  ℕ ) | 
						
							| 46 | 45 | nnzd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝑀  ·  𝑁 )  ∈  ℤ ) | 
						
							| 47 |  | nnne0 | ⊢ ( ( 𝑀  ·  𝑁 )  ∈  ℕ  →  ( 𝑀  ·  𝑁 )  ≠  0 ) | 
						
							| 48 |  | simpr | ⊢ ( ( 𝑤  =  0  ∧  ( 𝑀  ·  𝑁 )  =  0 )  →  ( 𝑀  ·  𝑁 )  =  0 ) | 
						
							| 49 | 48 | necon3ai | ⊢ ( ( 𝑀  ·  𝑁 )  ≠  0  →  ¬  ( 𝑤  =  0  ∧  ( 𝑀  ·  𝑁 )  =  0 ) ) | 
						
							| 50 | 45 47 49 | 3syl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ¬  ( 𝑤  =  0  ∧  ( 𝑀  ·  𝑁 )  =  0 ) ) | 
						
							| 51 |  | dvdslegcd | ⊢ ( ( ( ( 𝑤  gcd  𝑀 )  ∈  ℤ  ∧  𝑤  ∈  ℤ  ∧  ( 𝑀  ·  𝑁 )  ∈  ℤ )  ∧  ¬  ( 𝑤  =  0  ∧  ( 𝑀  ·  𝑁 )  =  0 ) )  →  ( ( ( 𝑤  gcd  𝑀 )  ∥  𝑤  ∧  ( 𝑤  gcd  𝑀 )  ∥  ( 𝑀  ·  𝑁 ) )  →  ( 𝑤  gcd  𝑀 )  ≤  ( 𝑤  gcd  ( 𝑀  ·  𝑁 ) ) ) ) | 
						
							| 52 | 39 22 46 50 51 | syl31anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( ( ( 𝑤  gcd  𝑀 )  ∥  𝑤  ∧  ( 𝑤  gcd  𝑀 )  ∥  ( 𝑀  ·  𝑁 ) )  →  ( 𝑤  gcd  𝑀 )  ≤  ( 𝑤  gcd  ( 𝑀  ·  𝑁 ) ) ) ) | 
						
							| 53 | 32 44 52 | mp2and | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝑤  gcd  𝑀 )  ≤  ( 𝑤  gcd  ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 54 | 10 | simprbi | ⊢ ( 𝑤  ∈  𝑊  →  ( 𝑤  gcd  ( 𝑀  ·  𝑁 ) )  =  1 ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝑤  gcd  ( 𝑀  ·  𝑁 ) )  =  1 ) | 
						
							| 56 | 53 55 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝑤  gcd  𝑀 )  ≤  1 ) | 
						
							| 57 |  | nnle1eq1 | ⊢ ( ( 𝑤  gcd  𝑀 )  ∈  ℕ  →  ( ( 𝑤  gcd  𝑀 )  ≤  1  ↔  ( 𝑤  gcd  𝑀 )  =  1 ) ) | 
						
							| 58 | 38 57 | syl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( ( 𝑤  gcd  𝑀 )  ≤  1  ↔  ( 𝑤  gcd  𝑀 )  =  1 ) ) | 
						
							| 59 | 56 58 | mpbid | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝑤  gcd  𝑀 )  =  1 ) | 
						
							| 60 | 28 59 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( ( 𝑤  mod  𝑀 )  gcd  𝑀 )  =  1 ) | 
						
							| 61 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝑤  mod  𝑀 )  →  ( 𝑦  gcd  𝑀 )  =  ( ( 𝑤  mod  𝑀 )  gcd  𝑀 ) ) | 
						
							| 62 | 61 | eqeq1d | ⊢ ( 𝑦  =  ( 𝑤  mod  𝑀 )  →  ( ( 𝑦  gcd  𝑀 )  =  1  ↔  ( ( 𝑤  mod  𝑀 )  gcd  𝑀 )  =  1 ) ) | 
						
							| 63 | 62 5 | elrab2 | ⊢ ( ( 𝑤  mod  𝑀 )  ∈  𝑈  ↔  ( ( 𝑤  mod  𝑀 )  ∈  ( 0 ..^ 𝑀 )  ∧  ( ( 𝑤  mod  𝑀 )  gcd  𝑀 )  =  1 ) ) | 
						
							| 64 | 26 60 63 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝑤  mod  𝑀 )  ∈  𝑈 ) | 
						
							| 65 |  | zmodfzo | ⊢ ( ( 𝑤  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( 𝑤  mod  𝑁 )  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 66 | 22 41 65 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝑤  mod  𝑁 )  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 67 |  | modgcd | ⊢ ( ( 𝑤  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑤  mod  𝑁 )  gcd  𝑁 )  =  ( 𝑤  gcd  𝑁 ) ) | 
						
							| 68 | 22 41 67 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( ( 𝑤  mod  𝑁 )  gcd  𝑁 )  =  ( 𝑤  gcd  𝑁 ) ) | 
						
							| 69 |  | gcddvds | ⊢ ( ( 𝑤  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑤  gcd  𝑁 )  ∥  𝑤  ∧  ( 𝑤  gcd  𝑁 )  ∥  𝑁 ) ) | 
						
							| 70 | 22 42 69 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( ( 𝑤  gcd  𝑁 )  ∥  𝑤  ∧  ( 𝑤  gcd  𝑁 )  ∥  𝑁 ) ) | 
						
							| 71 | 70 | simpld | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝑤  gcd  𝑁 )  ∥  𝑤 ) | 
						
							| 72 |  | nnne0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ≠  0 ) | 
						
							| 73 |  | simpr | ⊢ ( ( 𝑤  =  0  ∧  𝑁  =  0 )  →  𝑁  =  0 ) | 
						
							| 74 | 73 | necon3ai | ⊢ ( 𝑁  ≠  0  →  ¬  ( 𝑤  =  0  ∧  𝑁  =  0 ) ) | 
						
							| 75 | 41 72 74 | 3syl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ¬  ( 𝑤  =  0  ∧  𝑁  =  0 ) ) | 
						
							| 76 |  | gcdn0cl | ⊢ ( ( ( 𝑤  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑤  =  0  ∧  𝑁  =  0 ) )  →  ( 𝑤  gcd  𝑁 )  ∈  ℕ ) | 
						
							| 77 | 22 42 75 76 | syl21anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝑤  gcd  𝑁 )  ∈  ℕ ) | 
						
							| 78 | 77 | nnzd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝑤  gcd  𝑁 )  ∈  ℤ ) | 
						
							| 79 | 70 | simprd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝑤  gcd  𝑁 )  ∥  𝑁 ) | 
						
							| 80 |  | dvdsmul2 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  𝑁  ∥  ( 𝑀  ·  𝑁 ) ) | 
						
							| 81 | 29 42 80 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  𝑁  ∥  ( 𝑀  ·  𝑁 ) ) | 
						
							| 82 | 78 42 46 79 81 | dvdstrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝑤  gcd  𝑁 )  ∥  ( 𝑀  ·  𝑁 ) ) | 
						
							| 83 |  | dvdslegcd | ⊢ ( ( ( ( 𝑤  gcd  𝑁 )  ∈  ℤ  ∧  𝑤  ∈  ℤ  ∧  ( 𝑀  ·  𝑁 )  ∈  ℤ )  ∧  ¬  ( 𝑤  =  0  ∧  ( 𝑀  ·  𝑁 )  =  0 ) )  →  ( ( ( 𝑤  gcd  𝑁 )  ∥  𝑤  ∧  ( 𝑤  gcd  𝑁 )  ∥  ( 𝑀  ·  𝑁 ) )  →  ( 𝑤  gcd  𝑁 )  ≤  ( 𝑤  gcd  ( 𝑀  ·  𝑁 ) ) ) ) | 
						
							| 84 | 78 22 46 50 83 | syl31anc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( ( ( 𝑤  gcd  𝑁 )  ∥  𝑤  ∧  ( 𝑤  gcd  𝑁 )  ∥  ( 𝑀  ·  𝑁 ) )  →  ( 𝑤  gcd  𝑁 )  ≤  ( 𝑤  gcd  ( 𝑀  ·  𝑁 ) ) ) ) | 
						
							| 85 | 71 82 84 | mp2and | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝑤  gcd  𝑁 )  ≤  ( 𝑤  gcd  ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 86 | 85 55 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝑤  gcd  𝑁 )  ≤  1 ) | 
						
							| 87 |  | nnle1eq1 | ⊢ ( ( 𝑤  gcd  𝑁 )  ∈  ℕ  →  ( ( 𝑤  gcd  𝑁 )  ≤  1  ↔  ( 𝑤  gcd  𝑁 )  =  1 ) ) | 
						
							| 88 | 77 87 | syl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( ( 𝑤  gcd  𝑁 )  ≤  1  ↔  ( 𝑤  gcd  𝑁 )  =  1 ) ) | 
						
							| 89 | 86 88 | mpbid | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝑤  gcd  𝑁 )  =  1 ) | 
						
							| 90 | 68 89 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( ( 𝑤  mod  𝑁 )  gcd  𝑁 )  =  1 ) | 
						
							| 91 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝑤  mod  𝑁 )  →  ( 𝑦  gcd  𝑁 )  =  ( ( 𝑤  mod  𝑁 )  gcd  𝑁 ) ) | 
						
							| 92 | 91 | eqeq1d | ⊢ ( 𝑦  =  ( 𝑤  mod  𝑁 )  →  ( ( 𝑦  gcd  𝑁 )  =  1  ↔  ( ( 𝑤  mod  𝑁 )  gcd  𝑁 )  =  1 ) ) | 
						
							| 93 | 92 6 | elrab2 | ⊢ ( ( 𝑤  mod  𝑁 )  ∈  𝑉  ↔  ( ( 𝑤  mod  𝑁 )  ∈  ( 0 ..^ 𝑁 )  ∧  ( ( 𝑤  mod  𝑁 )  gcd  𝑁 )  =  1 ) ) | 
						
							| 94 | 66 90 93 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝑤  mod  𝑁 )  ∈  𝑉 ) | 
						
							| 95 | 64 94 | opelxpd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  〈 ( 𝑤  mod  𝑀 ) ,  ( 𝑤  mod  𝑁 ) 〉  ∈  ( 𝑈  ×  𝑉 ) ) | 
						
							| 96 | 18 95 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑊 )  →  ( 𝐹 ‘ 𝑤 )  ∈  ( 𝑈  ×  𝑉 ) ) | 
						
							| 97 | 96 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  𝑊 ( 𝐹 ‘ 𝑤 )  ∈  ( 𝑈  ×  𝑉 ) ) | 
						
							| 98 | 1 2 3 4 | crth | ⊢ ( 𝜑  →  𝐹 : 𝑆 –1-1-onto→ 𝑇 ) | 
						
							| 99 |  | f1ofn | ⊢ ( 𝐹 : 𝑆 –1-1-onto→ 𝑇  →  𝐹  Fn  𝑆 ) | 
						
							| 100 |  | fnfun | ⊢ ( 𝐹  Fn  𝑆  →  Fun  𝐹 ) | 
						
							| 101 | 98 99 100 | 3syl | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 102 | 7 | ssrab3 | ⊢ 𝑊  ⊆  𝑆 | 
						
							| 103 |  | fndm | ⊢ ( 𝐹  Fn  𝑆  →  dom  𝐹  =  𝑆 ) | 
						
							| 104 | 98 99 103 | 3syl | ⊢ ( 𝜑  →  dom  𝐹  =  𝑆 ) | 
						
							| 105 | 102 104 | sseqtrrid | ⊢ ( 𝜑  →  𝑊  ⊆  dom  𝐹 ) | 
						
							| 106 |  | funimass4 | ⊢ ( ( Fun  𝐹  ∧  𝑊  ⊆  dom  𝐹 )  →  ( ( 𝐹  “  𝑊 )  ⊆  ( 𝑈  ×  𝑉 )  ↔  ∀ 𝑤  ∈  𝑊 ( 𝐹 ‘ 𝑤 )  ∈  ( 𝑈  ×  𝑉 ) ) ) | 
						
							| 107 | 101 105 106 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐹  “  𝑊 )  ⊆  ( 𝑈  ×  𝑉 )  ↔  ∀ 𝑤  ∈  𝑊 ( 𝐹 ‘ 𝑤 )  ∈  ( 𝑈  ×  𝑉 ) ) ) | 
						
							| 108 | 97 107 | mpbird | ⊢ ( 𝜑  →  ( 𝐹  “  𝑊 )  ⊆  ( 𝑈  ×  𝑉 ) ) | 
						
							| 109 | 5 | ssrab3 | ⊢ 𝑈  ⊆  ( 0 ..^ 𝑀 ) | 
						
							| 110 | 6 | ssrab3 | ⊢ 𝑉  ⊆  ( 0 ..^ 𝑁 ) | 
						
							| 111 |  | xpss12 | ⊢ ( ( 𝑈  ⊆  ( 0 ..^ 𝑀 )  ∧  𝑉  ⊆  ( 0 ..^ 𝑁 ) )  →  ( 𝑈  ×  𝑉 )  ⊆  ( ( 0 ..^ 𝑀 )  ×  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 112 | 109 110 111 | mp2an | ⊢ ( 𝑈  ×  𝑉 )  ⊆  ( ( 0 ..^ 𝑀 )  ×  ( 0 ..^ 𝑁 ) ) | 
						
							| 113 | 112 2 | sseqtrri | ⊢ ( 𝑈  ×  𝑉 )  ⊆  𝑇 | 
						
							| 114 | 113 | sseli | ⊢ ( 𝑧  ∈  ( 𝑈  ×  𝑉 )  →  𝑧  ∈  𝑇 ) | 
						
							| 115 |  | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝑆 –1-1-onto→ 𝑇  ∧  𝑧  ∈  𝑇 )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) )  =  𝑧 ) | 
						
							| 116 | 98 114 115 | syl2an | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) )  =  𝑧 ) | 
						
							| 117 |  | f1ocnv | ⊢ ( 𝐹 : 𝑆 –1-1-onto→ 𝑇  →  ◡ 𝐹 : 𝑇 –1-1-onto→ 𝑆 ) | 
						
							| 118 |  | f1of | ⊢ ( ◡ 𝐹 : 𝑇 –1-1-onto→ 𝑆  →  ◡ 𝐹 : 𝑇 ⟶ 𝑆 ) | 
						
							| 119 | 98 117 118 | 3syl | ⊢ ( 𝜑  →  ◡ 𝐹 : 𝑇 ⟶ 𝑆 ) | 
						
							| 120 |  | ffvelcdm | ⊢ ( ( ◡ 𝐹 : 𝑇 ⟶ 𝑆  ∧  𝑧  ∈  𝑇 )  →  ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑆 ) | 
						
							| 121 | 119 114 120 | syl2an | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑆 ) | 
						
							| 122 | 121 1 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  ( ◡ 𝐹 ‘ 𝑧 )  ∈  ( 0 ..^ ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 123 |  | elfzoelz | ⊢ ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  ( 0 ..^ ( 𝑀  ·  𝑁 ) )  →  ( ◡ 𝐹 ‘ 𝑧 )  ∈  ℤ ) | 
						
							| 124 | 122 123 | syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  ( ◡ 𝐹 ‘ 𝑧 )  ∈  ℤ ) | 
						
							| 125 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 126 |  | modgcd | ⊢ ( ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  ℤ  ∧  𝑀  ∈  ℕ )  →  ( ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑀 )  gcd  𝑀 )  =  ( ( ◡ 𝐹 ‘ 𝑧 )  gcd  𝑀 ) ) | 
						
							| 127 | 124 125 126 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  ( ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑀 )  gcd  𝑀 )  =  ( ( ◡ 𝐹 ‘ 𝑧 )  gcd  𝑀 ) ) | 
						
							| 128 |  | oveq1 | ⊢ ( 𝑤  =  ( ◡ 𝐹 ‘ 𝑧 )  →  ( 𝑤  mod  𝑀 )  =  ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑀 ) ) | 
						
							| 129 |  | oveq1 | ⊢ ( 𝑤  =  ( ◡ 𝐹 ‘ 𝑧 )  →  ( 𝑤  mod  𝑁 )  =  ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑁 ) ) | 
						
							| 130 | 128 129 | opeq12d | ⊢ ( 𝑤  =  ( ◡ 𝐹 ‘ 𝑧 )  →  〈 ( 𝑤  mod  𝑀 ) ,  ( 𝑤  mod  𝑁 ) 〉  =  〈 ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑀 ) ,  ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑁 ) 〉 ) | 
						
							| 131 | 14 | cbvmptv | ⊢ ( 𝑥  ∈  𝑆  ↦  〈 ( 𝑥  mod  𝑀 ) ,  ( 𝑥  mod  𝑁 ) 〉 )  =  ( 𝑤  ∈  𝑆  ↦  〈 ( 𝑤  mod  𝑀 ) ,  ( 𝑤  mod  𝑁 ) 〉 ) | 
						
							| 132 | 3 131 | eqtri | ⊢ 𝐹  =  ( 𝑤  ∈  𝑆  ↦  〈 ( 𝑤  mod  𝑀 ) ,  ( 𝑤  mod  𝑁 ) 〉 ) | 
						
							| 133 |  | opex | ⊢ 〈 ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑀 ) ,  ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑁 ) 〉  ∈  V | 
						
							| 134 | 130 132 133 | fvmpt | ⊢ ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑆  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) )  =  〈 ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑀 ) ,  ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑁 ) 〉 ) | 
						
							| 135 | 121 134 | syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) )  =  〈 ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑀 ) ,  ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑁 ) 〉 ) | 
						
							| 136 | 116 135 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  𝑧  =  〈 ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑀 ) ,  ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑁 ) 〉 ) | 
						
							| 137 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  𝑧  ∈  ( 𝑈  ×  𝑉 ) ) | 
						
							| 138 | 136 137 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  〈 ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑀 ) ,  ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑁 ) 〉  ∈  ( 𝑈  ×  𝑉 ) ) | 
						
							| 139 |  | opelxp | ⊢ ( 〈 ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑀 ) ,  ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑁 ) 〉  ∈  ( 𝑈  ×  𝑉 )  ↔  ( ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑀 )  ∈  𝑈  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑁 )  ∈  𝑉 ) ) | 
						
							| 140 | 138 139 | sylib | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  ( ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑀 )  ∈  𝑈  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑁 )  ∈  𝑉 ) ) | 
						
							| 141 | 140 | simpld | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑀 )  ∈  𝑈 ) | 
						
							| 142 |  | oveq1 | ⊢ ( 𝑦  =  ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑀 )  →  ( 𝑦  gcd  𝑀 )  =  ( ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑀 )  gcd  𝑀 ) ) | 
						
							| 143 | 142 | eqeq1d | ⊢ ( 𝑦  =  ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑀 )  →  ( ( 𝑦  gcd  𝑀 )  =  1  ↔  ( ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑀 )  gcd  𝑀 )  =  1 ) ) | 
						
							| 144 | 143 5 | elrab2 | ⊢ ( ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑀 )  ∈  𝑈  ↔  ( ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑀 )  ∈  ( 0 ..^ 𝑀 )  ∧  ( ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑀 )  gcd  𝑀 )  =  1 ) ) | 
						
							| 145 | 141 144 | sylib | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  ( ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑀 )  ∈  ( 0 ..^ 𝑀 )  ∧  ( ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑀 )  gcd  𝑀 )  =  1 ) ) | 
						
							| 146 | 145 | simprd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  ( ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑀 )  gcd  𝑀 )  =  1 ) | 
						
							| 147 | 127 146 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  ( ( ◡ 𝐹 ‘ 𝑧 )  gcd  𝑀 )  =  1 ) | 
						
							| 148 | 40 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  𝑁  ∈  ℕ ) | 
						
							| 149 |  | modgcd | ⊢ ( ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑁 )  gcd  𝑁 )  =  ( ( ◡ 𝐹 ‘ 𝑧 )  gcd  𝑁 ) ) | 
						
							| 150 | 124 148 149 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  ( ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑁 )  gcd  𝑁 )  =  ( ( ◡ 𝐹 ‘ 𝑧 )  gcd  𝑁 ) ) | 
						
							| 151 | 140 | simprd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑁 )  ∈  𝑉 ) | 
						
							| 152 |  | oveq1 | ⊢ ( 𝑦  =  ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑁 )  →  ( 𝑦  gcd  𝑁 )  =  ( ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑁 )  gcd  𝑁 ) ) | 
						
							| 153 | 152 | eqeq1d | ⊢ ( 𝑦  =  ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑁 )  →  ( ( 𝑦  gcd  𝑁 )  =  1  ↔  ( ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑁 )  gcd  𝑁 )  =  1 ) ) | 
						
							| 154 | 153 6 | elrab2 | ⊢ ( ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑁 )  ∈  𝑉  ↔  ( ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑁 )  ∈  ( 0 ..^ 𝑁 )  ∧  ( ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑁 )  gcd  𝑁 )  =  1 ) ) | 
						
							| 155 | 151 154 | sylib | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  ( ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑁 )  ∈  ( 0 ..^ 𝑁 )  ∧  ( ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑁 )  gcd  𝑁 )  =  1 ) ) | 
						
							| 156 | 155 | simprd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  ( ( ( ◡ 𝐹 ‘ 𝑧 )  mod  𝑁 )  gcd  𝑁 )  =  1 ) | 
						
							| 157 | 150 156 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  ( ( ◡ 𝐹 ‘ 𝑧 )  gcd  𝑁 )  =  1 ) | 
						
							| 158 | 23 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 159 | 158 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 160 | 40 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 161 | 160 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 162 |  | rpmul | ⊢ ( ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( ( ( ◡ 𝐹 ‘ 𝑧 )  gcd  𝑀 )  =  1  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  gcd  𝑁 )  =  1 )  →  ( ( ◡ 𝐹 ‘ 𝑧 )  gcd  ( 𝑀  ·  𝑁 ) )  =  1 ) ) | 
						
							| 163 | 124 159 161 162 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  ( ( ( ( ◡ 𝐹 ‘ 𝑧 )  gcd  𝑀 )  =  1  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  gcd  𝑁 )  =  1 )  →  ( ( ◡ 𝐹 ‘ 𝑧 )  gcd  ( 𝑀  ·  𝑁 ) )  =  1 ) ) | 
						
							| 164 | 147 157 163 | mp2and | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  ( ( ◡ 𝐹 ‘ 𝑧 )  gcd  ( 𝑀  ·  𝑁 ) )  =  1 ) | 
						
							| 165 |  | oveq1 | ⊢ ( 𝑦  =  ( ◡ 𝐹 ‘ 𝑧 )  →  ( 𝑦  gcd  ( 𝑀  ·  𝑁 ) )  =  ( ( ◡ 𝐹 ‘ 𝑧 )  gcd  ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 166 | 165 | eqeq1d | ⊢ ( 𝑦  =  ( ◡ 𝐹 ‘ 𝑧 )  →  ( ( 𝑦  gcd  ( 𝑀  ·  𝑁 ) )  =  1  ↔  ( ( ◡ 𝐹 ‘ 𝑧 )  gcd  ( 𝑀  ·  𝑁 ) )  =  1 ) ) | 
						
							| 167 | 166 7 | elrab2 | ⊢ ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑊  ↔  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑆  ∧  ( ( ◡ 𝐹 ‘ 𝑧 )  gcd  ( 𝑀  ·  𝑁 ) )  =  1 ) ) | 
						
							| 168 | 121 164 167 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑊 ) | 
						
							| 169 |  | funfvima2 | ⊢ ( ( Fun  𝐹  ∧  𝑊  ⊆  dom  𝐹 )  →  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑊  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐹  “  𝑊 ) ) ) | 
						
							| 170 | 101 105 169 | syl2anc | ⊢ ( 𝜑  →  ( ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑊  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐹  “  𝑊 ) ) ) | 
						
							| 171 | 170 | imp | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐹 ‘ 𝑧 )  ∈  𝑊 )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐹  “  𝑊 ) ) | 
						
							| 172 | 168 171 | syldan | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐹  “  𝑊 ) ) | 
						
							| 173 | 116 172 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑈  ×  𝑉 ) )  →  𝑧  ∈  ( 𝐹  “  𝑊 ) ) | 
						
							| 174 | 108 173 | eqelssd | ⊢ ( 𝜑  →  ( 𝐹  “  𝑊 )  =  ( 𝑈  ×  𝑉 ) ) | 
						
							| 175 |  | f1of1 | ⊢ ( 𝐹 : 𝑆 –1-1-onto→ 𝑇  →  𝐹 : 𝑆 –1-1→ 𝑇 ) | 
						
							| 176 | 98 175 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑆 –1-1→ 𝑇 ) | 
						
							| 177 |  | fzofi | ⊢ ( 0 ..^ ( 𝑀  ·  𝑁 ) )  ∈  Fin | 
						
							| 178 | 1 177 | eqeltri | ⊢ 𝑆  ∈  Fin | 
						
							| 179 |  | ssfi | ⊢ ( ( 𝑆  ∈  Fin  ∧  𝑊  ⊆  𝑆 )  →  𝑊  ∈  Fin ) | 
						
							| 180 | 178 102 179 | mp2an | ⊢ 𝑊  ∈  Fin | 
						
							| 181 | 180 | elexi | ⊢ 𝑊  ∈  V | 
						
							| 182 | 181 | f1imaen | ⊢ ( ( 𝐹 : 𝑆 –1-1→ 𝑇  ∧  𝑊  ⊆  𝑆 )  →  ( 𝐹  “  𝑊 )  ≈  𝑊 ) | 
						
							| 183 | 176 102 182 | sylancl | ⊢ ( 𝜑  →  ( 𝐹  “  𝑊 )  ≈  𝑊 ) | 
						
							| 184 | 174 183 | eqbrtrrd | ⊢ ( 𝜑  →  ( 𝑈  ×  𝑉 )  ≈  𝑊 ) | 
						
							| 185 |  | fzofi | ⊢ ( 0 ..^ 𝑀 )  ∈  Fin | 
						
							| 186 |  | ssrab2 | ⊢ { 𝑦  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑦  gcd  𝑀 )  =  1 }  ⊆  ( 0 ..^ 𝑀 ) | 
						
							| 187 |  | ssfi | ⊢ ( ( ( 0 ..^ 𝑀 )  ∈  Fin  ∧  { 𝑦  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑦  gcd  𝑀 )  =  1 }  ⊆  ( 0 ..^ 𝑀 ) )  →  { 𝑦  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑦  gcd  𝑀 )  =  1 }  ∈  Fin ) | 
						
							| 188 | 185 186 187 | mp2an | ⊢ { 𝑦  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑦  gcd  𝑀 )  =  1 }  ∈  Fin | 
						
							| 189 | 5 188 | eqeltri | ⊢ 𝑈  ∈  Fin | 
						
							| 190 |  | fzofi | ⊢ ( 0 ..^ 𝑁 )  ∈  Fin | 
						
							| 191 |  | ssrab2 | ⊢ { 𝑦  ∈  ( 0 ..^ 𝑁 )  ∣  ( 𝑦  gcd  𝑁 )  =  1 }  ⊆  ( 0 ..^ 𝑁 ) | 
						
							| 192 |  | ssfi | ⊢ ( ( ( 0 ..^ 𝑁 )  ∈  Fin  ∧  { 𝑦  ∈  ( 0 ..^ 𝑁 )  ∣  ( 𝑦  gcd  𝑁 )  =  1 }  ⊆  ( 0 ..^ 𝑁 ) )  →  { 𝑦  ∈  ( 0 ..^ 𝑁 )  ∣  ( 𝑦  gcd  𝑁 )  =  1 }  ∈  Fin ) | 
						
							| 193 | 190 191 192 | mp2an | ⊢ { 𝑦  ∈  ( 0 ..^ 𝑁 )  ∣  ( 𝑦  gcd  𝑁 )  =  1 }  ∈  Fin | 
						
							| 194 | 6 193 | eqeltri | ⊢ 𝑉  ∈  Fin | 
						
							| 195 |  | xpfi | ⊢ ( ( 𝑈  ∈  Fin  ∧  𝑉  ∈  Fin )  →  ( 𝑈  ×  𝑉 )  ∈  Fin ) | 
						
							| 196 | 189 194 195 | mp2an | ⊢ ( 𝑈  ×  𝑉 )  ∈  Fin | 
						
							| 197 |  | hashen | ⊢ ( ( ( 𝑈  ×  𝑉 )  ∈  Fin  ∧  𝑊  ∈  Fin )  →  ( ( ♯ ‘ ( 𝑈  ×  𝑉 ) )  =  ( ♯ ‘ 𝑊 )  ↔  ( 𝑈  ×  𝑉 )  ≈  𝑊 ) ) | 
						
							| 198 | 196 180 197 | mp2an | ⊢ ( ( ♯ ‘ ( 𝑈  ×  𝑉 ) )  =  ( ♯ ‘ 𝑊 )  ↔  ( 𝑈  ×  𝑉 )  ≈  𝑊 ) | 
						
							| 199 | 184 198 | sylibr | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑈  ×  𝑉 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 200 |  | hashxp | ⊢ ( ( 𝑈  ∈  Fin  ∧  𝑉  ∈  Fin )  →  ( ♯ ‘ ( 𝑈  ×  𝑉 ) )  =  ( ( ♯ ‘ 𝑈 )  ·  ( ♯ ‘ 𝑉 ) ) ) | 
						
							| 201 | 189 194 200 | mp2an | ⊢ ( ♯ ‘ ( 𝑈  ×  𝑉 ) )  =  ( ( ♯ ‘ 𝑈 )  ·  ( ♯ ‘ 𝑉 ) ) | 
						
							| 202 | 199 201 | eqtr3di | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  =  ( ( ♯ ‘ 𝑈 )  ·  ( ♯ ‘ 𝑉 ) ) ) | 
						
							| 203 | 23 40 | nnmulcld | ⊢ ( 𝜑  →  ( 𝑀  ·  𝑁 )  ∈  ℕ ) | 
						
							| 204 |  | dfphi2 | ⊢ ( ( 𝑀  ·  𝑁 )  ∈  ℕ  →  ( ϕ ‘ ( 𝑀  ·  𝑁 ) )  =  ( ♯ ‘ { 𝑦  ∈  ( 0 ..^ ( 𝑀  ·  𝑁 ) )  ∣  ( 𝑦  gcd  ( 𝑀  ·  𝑁 ) )  =  1 } ) ) | 
						
							| 205 | 1 | rabeqi | ⊢ { 𝑦  ∈  𝑆  ∣  ( 𝑦  gcd  ( 𝑀  ·  𝑁 ) )  =  1 }  =  { 𝑦  ∈  ( 0 ..^ ( 𝑀  ·  𝑁 ) )  ∣  ( 𝑦  gcd  ( 𝑀  ·  𝑁 ) )  =  1 } | 
						
							| 206 | 7 205 | eqtri | ⊢ 𝑊  =  { 𝑦  ∈  ( 0 ..^ ( 𝑀  ·  𝑁 ) )  ∣  ( 𝑦  gcd  ( 𝑀  ·  𝑁 ) )  =  1 } | 
						
							| 207 | 206 | fveq2i | ⊢ ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ { 𝑦  ∈  ( 0 ..^ ( 𝑀  ·  𝑁 ) )  ∣  ( 𝑦  gcd  ( 𝑀  ·  𝑁 ) )  =  1 } ) | 
						
							| 208 | 204 207 | eqtr4di | ⊢ ( ( 𝑀  ·  𝑁 )  ∈  ℕ  →  ( ϕ ‘ ( 𝑀  ·  𝑁 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 209 | 203 208 | syl | ⊢ ( 𝜑  →  ( ϕ ‘ ( 𝑀  ·  𝑁 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 210 |  | dfphi2 | ⊢ ( 𝑀  ∈  ℕ  →  ( ϕ ‘ 𝑀 )  =  ( ♯ ‘ { 𝑦  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑦  gcd  𝑀 )  =  1 } ) ) | 
						
							| 211 | 5 | fveq2i | ⊢ ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ { 𝑦  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑦  gcd  𝑀 )  =  1 } ) | 
						
							| 212 | 210 211 | eqtr4di | ⊢ ( 𝑀  ∈  ℕ  →  ( ϕ ‘ 𝑀 )  =  ( ♯ ‘ 𝑈 ) ) | 
						
							| 213 | 23 212 | syl | ⊢ ( 𝜑  →  ( ϕ ‘ 𝑀 )  =  ( ♯ ‘ 𝑈 ) ) | 
						
							| 214 |  | dfphi2 | ⊢ ( 𝑁  ∈  ℕ  →  ( ϕ ‘ 𝑁 )  =  ( ♯ ‘ { 𝑦  ∈  ( 0 ..^ 𝑁 )  ∣  ( 𝑦  gcd  𝑁 )  =  1 } ) ) | 
						
							| 215 | 6 | fveq2i | ⊢ ( ♯ ‘ 𝑉 )  =  ( ♯ ‘ { 𝑦  ∈  ( 0 ..^ 𝑁 )  ∣  ( 𝑦  gcd  𝑁 )  =  1 } ) | 
						
							| 216 | 214 215 | eqtr4di | ⊢ ( 𝑁  ∈  ℕ  →  ( ϕ ‘ 𝑁 )  =  ( ♯ ‘ 𝑉 ) ) | 
						
							| 217 | 40 216 | syl | ⊢ ( 𝜑  →  ( ϕ ‘ 𝑁 )  =  ( ♯ ‘ 𝑉 ) ) | 
						
							| 218 | 213 217 | oveq12d | ⊢ ( 𝜑  →  ( ( ϕ ‘ 𝑀 )  ·  ( ϕ ‘ 𝑁 ) )  =  ( ( ♯ ‘ 𝑈 )  ·  ( ♯ ‘ 𝑉 ) ) ) | 
						
							| 219 | 202 209 218 | 3eqtr4d | ⊢ ( 𝜑  →  ( ϕ ‘ ( 𝑀  ·  𝑁 ) )  =  ( ( ϕ ‘ 𝑀 )  ·  ( ϕ ‘ 𝑁 ) ) ) |