| Step | Hyp | Ref | Expression | 
						
							| 1 |  | crth.1 | ⊢ 𝑆  =  ( 0 ..^ ( 𝑀  ·  𝑁 ) ) | 
						
							| 2 |  | crth.2 | ⊢ 𝑇  =  ( ( 0 ..^ 𝑀 )  ×  ( 0 ..^ 𝑁 ) ) | 
						
							| 3 |  | crth.3 | ⊢ 𝐹  =  ( 𝑥  ∈  𝑆  ↦  〈 ( 𝑥  mod  𝑀 ) ,  ( 𝑥  mod  𝑁 ) 〉 ) | 
						
							| 4 |  | crth.4 | ⊢ ( 𝜑  →  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  ( 𝑀  gcd  𝑁 )  =  1 ) ) | 
						
							| 5 |  | elfzoelz | ⊢ ( 𝑥  ∈  ( 0 ..^ ( 𝑀  ·  𝑁 ) )  →  𝑥  ∈  ℤ ) | 
						
							| 6 | 5 1 | eleq2s | ⊢ ( 𝑥  ∈  𝑆  →  𝑥  ∈  ℤ ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℤ )  →  𝑥  ∈  ℤ ) | 
						
							| 8 | 4 | simp1d | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℤ )  →  𝑀  ∈  ℕ ) | 
						
							| 10 |  | zmodfzo | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑀  ∈  ℕ )  →  ( 𝑥  mod  𝑀 )  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 11 | 7 9 10 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℤ )  →  ( 𝑥  mod  𝑀 )  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 12 | 4 | simp2d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℤ )  →  𝑁  ∈  ℕ ) | 
						
							| 14 |  | zmodfzo | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( 𝑥  mod  𝑁 )  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 15 | 7 13 14 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℤ )  →  ( 𝑥  mod  𝑁 )  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 16 | 11 15 | opelxpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℤ )  →  〈 ( 𝑥  mod  𝑀 ) ,  ( 𝑥  mod  𝑁 ) 〉  ∈  ( ( 0 ..^ 𝑀 )  ×  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 17 | 16 2 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℤ )  →  〈 ( 𝑥  mod  𝑀 ) ,  ( 𝑥  mod  𝑁 ) 〉  ∈  𝑇 ) | 
						
							| 18 | 6 17 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  〈 ( 𝑥  mod  𝑀 ) ,  ( 𝑥  mod  𝑁 ) 〉  ∈  𝑇 ) | 
						
							| 19 | 18 3 | fmptd | ⊢ ( 𝜑  →  𝐹 : 𝑆 ⟶ 𝑇 ) | 
						
							| 20 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  mod  𝑀 )  =  ( 𝑦  mod  𝑀 ) ) | 
						
							| 21 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  mod  𝑁 )  =  ( 𝑦  mod  𝑁 ) ) | 
						
							| 22 | 20 21 | opeq12d | ⊢ ( 𝑥  =  𝑦  →  〈 ( 𝑥  mod  𝑀 ) ,  ( 𝑥  mod  𝑁 ) 〉  =  〈 ( 𝑦  mod  𝑀 ) ,  ( 𝑦  mod  𝑁 ) 〉 ) | 
						
							| 23 |  | opex | ⊢ 〈 ( 𝑦  mod  𝑀 ) ,  ( 𝑦  mod  𝑁 ) 〉  ∈  V | 
						
							| 24 | 22 3 23 | fvmpt | ⊢ ( 𝑦  ∈  𝑆  →  ( 𝐹 ‘ 𝑦 )  =  〈 ( 𝑦  mod  𝑀 ) ,  ( 𝑦  mod  𝑁 ) 〉 ) | 
						
							| 25 | 24 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝐹 ‘ 𝑦 )  =  〈 ( 𝑦  mod  𝑀 ) ,  ( 𝑦  mod  𝑁 ) 〉 ) | 
						
							| 26 |  | oveq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  mod  𝑀 )  =  ( 𝑧  mod  𝑀 ) ) | 
						
							| 27 |  | oveq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  mod  𝑁 )  =  ( 𝑧  mod  𝑁 ) ) | 
						
							| 28 | 26 27 | opeq12d | ⊢ ( 𝑥  =  𝑧  →  〈 ( 𝑥  mod  𝑀 ) ,  ( 𝑥  mod  𝑁 ) 〉  =  〈 ( 𝑧  mod  𝑀 ) ,  ( 𝑧  mod  𝑁 ) 〉 ) | 
						
							| 29 |  | opex | ⊢ 〈 ( 𝑧  mod  𝑀 ) ,  ( 𝑧  mod  𝑁 ) 〉  ∈  V | 
						
							| 30 | 28 3 29 | fvmpt | ⊢ ( 𝑧  ∈  𝑆  →  ( 𝐹 ‘ 𝑧 )  =  〈 ( 𝑧  mod  𝑀 ) ,  ( 𝑧  mod  𝑁 ) 〉 ) | 
						
							| 31 | 30 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝐹 ‘ 𝑧 )  =  〈 ( 𝑧  mod  𝑀 ) ,  ( 𝑧  mod  𝑁 ) 〉 ) | 
						
							| 32 | 25 31 | eqeq12d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  ↔  〈 ( 𝑦  mod  𝑀 ) ,  ( 𝑦  mod  𝑁 ) 〉  =  〈 ( 𝑧  mod  𝑀 ) ,  ( 𝑧  mod  𝑁 ) 〉 ) ) | 
						
							| 33 |  | ovex | ⊢ ( 𝑦  mod  𝑀 )  ∈  V | 
						
							| 34 |  | ovex | ⊢ ( 𝑦  mod  𝑁 )  ∈  V | 
						
							| 35 | 33 34 | opth | ⊢ ( 〈 ( 𝑦  mod  𝑀 ) ,  ( 𝑦  mod  𝑁 ) 〉  =  〈 ( 𝑧  mod  𝑀 ) ,  ( 𝑧  mod  𝑁 ) 〉  ↔  ( ( 𝑦  mod  𝑀 )  =  ( 𝑧  mod  𝑀 )  ∧  ( 𝑦  mod  𝑁 )  =  ( 𝑧  mod  𝑁 ) ) ) | 
						
							| 36 | 32 35 | bitrdi | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  ↔  ( ( 𝑦  mod  𝑀 )  =  ( 𝑧  mod  𝑀 )  ∧  ( 𝑦  mod  𝑁 )  =  ( 𝑧  mod  𝑁 ) ) ) ) | 
						
							| 37 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 38 | 37 | nnzd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 39 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  𝑁  ∈  ℕ ) | 
						
							| 40 | 39 | nnzd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 41 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  𝑦  ∈  𝑆 ) | 
						
							| 42 | 41 1 | eleqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  𝑦  ∈  ( 0 ..^ ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 43 |  | elfzoelz | ⊢ ( 𝑦  ∈  ( 0 ..^ ( 𝑀  ·  𝑁 ) )  →  𝑦  ∈  ℤ ) | 
						
							| 44 | 42 43 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  𝑦  ∈  ℤ ) | 
						
							| 45 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  𝑧  ∈  𝑆 ) | 
						
							| 46 | 45 1 | eleqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  𝑧  ∈  ( 0 ..^ ( 𝑀  ·  𝑁 ) ) ) | 
						
							| 47 |  | elfzoelz | ⊢ ( 𝑧  ∈  ( 0 ..^ ( 𝑀  ·  𝑁 ) )  →  𝑧  ∈  ℤ ) | 
						
							| 48 | 46 47 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  𝑧  ∈  ℤ ) | 
						
							| 49 | 44 48 | zsubcld | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝑦  −  𝑧 )  ∈  ℤ ) | 
						
							| 50 | 4 | simp3d | ⊢ ( 𝜑  →  ( 𝑀  gcd  𝑁 )  =  1 ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝑀  gcd  𝑁 )  =  1 ) | 
						
							| 52 |  | coprmdvds2 | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  ( 𝑦  −  𝑧 )  ∈  ℤ )  ∧  ( 𝑀  gcd  𝑁 )  =  1 )  →  ( ( 𝑀  ∥  ( 𝑦  −  𝑧 )  ∧  𝑁  ∥  ( 𝑦  −  𝑧 ) )  →  ( 𝑀  ·  𝑁 )  ∥  ( 𝑦  −  𝑧 ) ) ) | 
						
							| 53 | 38 40 49 51 52 | syl31anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( ( 𝑀  ∥  ( 𝑦  −  𝑧 )  ∧  𝑁  ∥  ( 𝑦  −  𝑧 ) )  →  ( 𝑀  ·  𝑁 )  ∥  ( 𝑦  −  𝑧 ) ) ) | 
						
							| 54 |  | moddvds | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( ( 𝑦  mod  𝑀 )  =  ( 𝑧  mod  𝑀 )  ↔  𝑀  ∥  ( 𝑦  −  𝑧 ) ) ) | 
						
							| 55 | 37 44 48 54 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( ( 𝑦  mod  𝑀 )  =  ( 𝑧  mod  𝑀 )  ↔  𝑀  ∥  ( 𝑦  −  𝑧 ) ) ) | 
						
							| 56 |  | moddvds | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( ( 𝑦  mod  𝑁 )  =  ( 𝑧  mod  𝑁 )  ↔  𝑁  ∥  ( 𝑦  −  𝑧 ) ) ) | 
						
							| 57 | 39 44 48 56 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( ( 𝑦  mod  𝑁 )  =  ( 𝑧  mod  𝑁 )  ↔  𝑁  ∥  ( 𝑦  −  𝑧 ) ) ) | 
						
							| 58 | 55 57 | anbi12d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( ( ( 𝑦  mod  𝑀 )  =  ( 𝑧  mod  𝑀 )  ∧  ( 𝑦  mod  𝑁 )  =  ( 𝑧  mod  𝑁 ) )  ↔  ( 𝑀  ∥  ( 𝑦  −  𝑧 )  ∧  𝑁  ∥  ( 𝑦  −  𝑧 ) ) ) ) | 
						
							| 59 | 44 | zred | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 60 | 37 39 | nnmulcld | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝑀  ·  𝑁 )  ∈  ℕ ) | 
						
							| 61 | 60 | nnrpd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝑀  ·  𝑁 )  ∈  ℝ+ ) | 
						
							| 62 |  | elfzole1 | ⊢ ( 𝑦  ∈  ( 0 ..^ ( 𝑀  ·  𝑁 ) )  →  0  ≤  𝑦 ) | 
						
							| 63 | 42 62 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  0  ≤  𝑦 ) | 
						
							| 64 |  | elfzolt2 | ⊢ ( 𝑦  ∈  ( 0 ..^ ( 𝑀  ·  𝑁 ) )  →  𝑦  <  ( 𝑀  ·  𝑁 ) ) | 
						
							| 65 | 42 64 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  𝑦  <  ( 𝑀  ·  𝑁 ) ) | 
						
							| 66 |  | modid | ⊢ ( ( ( 𝑦  ∈  ℝ  ∧  ( 𝑀  ·  𝑁 )  ∈  ℝ+ )  ∧  ( 0  ≤  𝑦  ∧  𝑦  <  ( 𝑀  ·  𝑁 ) ) )  →  ( 𝑦  mod  ( 𝑀  ·  𝑁 ) )  =  𝑦 ) | 
						
							| 67 | 59 61 63 65 66 | syl22anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝑦  mod  ( 𝑀  ·  𝑁 ) )  =  𝑦 ) | 
						
							| 68 | 48 | zred | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  𝑧  ∈  ℝ ) | 
						
							| 69 |  | elfzole1 | ⊢ ( 𝑧  ∈  ( 0 ..^ ( 𝑀  ·  𝑁 ) )  →  0  ≤  𝑧 ) | 
						
							| 70 | 46 69 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  0  ≤  𝑧 ) | 
						
							| 71 |  | elfzolt2 | ⊢ ( 𝑧  ∈  ( 0 ..^ ( 𝑀  ·  𝑁 ) )  →  𝑧  <  ( 𝑀  ·  𝑁 ) ) | 
						
							| 72 | 46 71 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  𝑧  <  ( 𝑀  ·  𝑁 ) ) | 
						
							| 73 |  | modid | ⊢ ( ( ( 𝑧  ∈  ℝ  ∧  ( 𝑀  ·  𝑁 )  ∈  ℝ+ )  ∧  ( 0  ≤  𝑧  ∧  𝑧  <  ( 𝑀  ·  𝑁 ) ) )  →  ( 𝑧  mod  ( 𝑀  ·  𝑁 ) )  =  𝑧 ) | 
						
							| 74 | 68 61 70 72 73 | syl22anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝑧  mod  ( 𝑀  ·  𝑁 ) )  =  𝑧 ) | 
						
							| 75 | 67 74 | eqeq12d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( ( 𝑦  mod  ( 𝑀  ·  𝑁 ) )  =  ( 𝑧  mod  ( 𝑀  ·  𝑁 ) )  ↔  𝑦  =  𝑧 ) ) | 
						
							| 76 |  | moddvds | ⊢ ( ( ( 𝑀  ·  𝑁 )  ∈  ℕ  ∧  𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( ( 𝑦  mod  ( 𝑀  ·  𝑁 ) )  =  ( 𝑧  mod  ( 𝑀  ·  𝑁 ) )  ↔  ( 𝑀  ·  𝑁 )  ∥  ( 𝑦  −  𝑧 ) ) ) | 
						
							| 77 | 60 44 48 76 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( ( 𝑦  mod  ( 𝑀  ·  𝑁 ) )  =  ( 𝑧  mod  ( 𝑀  ·  𝑁 ) )  ↔  ( 𝑀  ·  𝑁 )  ∥  ( 𝑦  −  𝑧 ) ) ) | 
						
							| 78 | 75 77 | bitr3d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝑦  =  𝑧  ↔  ( 𝑀  ·  𝑁 )  ∥  ( 𝑦  −  𝑧 ) ) ) | 
						
							| 79 | 53 58 78 | 3imtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( ( ( 𝑦  mod  𝑀 )  =  ( 𝑧  mod  𝑀 )  ∧  ( 𝑦  mod  𝑁 )  =  ( 𝑧  mod  𝑁 ) )  →  𝑦  =  𝑧 ) ) | 
						
							| 80 | 36 79 | sylbid | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 81 | 80 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝑆 ∀ 𝑧  ∈  𝑆 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 82 |  | dff13 | ⊢ ( 𝐹 : 𝑆 –1-1→ 𝑇  ↔  ( 𝐹 : 𝑆 ⟶ 𝑇  ∧  ∀ 𝑦  ∈  𝑆 ∀ 𝑧  ∈  𝑆 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 83 | 19 81 82 | sylanbrc | ⊢ ( 𝜑  →  𝐹 : 𝑆 –1-1→ 𝑇 ) | 
						
							| 84 |  | nnnn0 | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℕ0 ) | 
						
							| 85 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 86 |  | nn0mulcl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑀  ·  𝑁 )  ∈  ℕ0 ) | 
						
							| 87 |  | hashfzo0 | ⊢ ( ( 𝑀  ·  𝑁 )  ∈  ℕ0  →  ( ♯ ‘ ( 0 ..^ ( 𝑀  ·  𝑁 ) ) )  =  ( 𝑀  ·  𝑁 ) ) | 
						
							| 88 | 86 87 | syl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ♯ ‘ ( 0 ..^ ( 𝑀  ·  𝑁 ) ) )  =  ( 𝑀  ·  𝑁 ) ) | 
						
							| 89 |  | fzofi | ⊢ ( 0 ..^ 𝑀 )  ∈  Fin | 
						
							| 90 |  | fzofi | ⊢ ( 0 ..^ 𝑁 )  ∈  Fin | 
						
							| 91 |  | hashxp | ⊢ ( ( ( 0 ..^ 𝑀 )  ∈  Fin  ∧  ( 0 ..^ 𝑁 )  ∈  Fin )  →  ( ♯ ‘ ( ( 0 ..^ 𝑀 )  ×  ( 0 ..^ 𝑁 ) ) )  =  ( ( ♯ ‘ ( 0 ..^ 𝑀 ) )  ·  ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) ) | 
						
							| 92 | 89 90 91 | mp2an | ⊢ ( ♯ ‘ ( ( 0 ..^ 𝑀 )  ×  ( 0 ..^ 𝑁 ) ) )  =  ( ( ♯ ‘ ( 0 ..^ 𝑀 ) )  ·  ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) | 
						
							| 93 |  | hashfzo0 | ⊢ ( 𝑀  ∈  ℕ0  →  ( ♯ ‘ ( 0 ..^ 𝑀 ) )  =  𝑀 ) | 
						
							| 94 |  | hashfzo0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( ♯ ‘ ( 0 ..^ 𝑁 ) )  =  𝑁 ) | 
						
							| 95 | 93 94 | oveqan12d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ( ♯ ‘ ( 0 ..^ 𝑀 ) )  ·  ( ♯ ‘ ( 0 ..^ 𝑁 ) ) )  =  ( 𝑀  ·  𝑁 ) ) | 
						
							| 96 | 92 95 | eqtrid | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ♯ ‘ ( ( 0 ..^ 𝑀 )  ×  ( 0 ..^ 𝑁 ) ) )  =  ( 𝑀  ·  𝑁 ) ) | 
						
							| 97 | 88 96 | eqtr4d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( ♯ ‘ ( 0 ..^ ( 𝑀  ·  𝑁 ) ) )  =  ( ♯ ‘ ( ( 0 ..^ 𝑀 )  ×  ( 0 ..^ 𝑁 ) ) ) ) | 
						
							| 98 |  | fzofi | ⊢ ( 0 ..^ ( 𝑀  ·  𝑁 ) )  ∈  Fin | 
						
							| 99 |  | xpfi | ⊢ ( ( ( 0 ..^ 𝑀 )  ∈  Fin  ∧  ( 0 ..^ 𝑁 )  ∈  Fin )  →  ( ( 0 ..^ 𝑀 )  ×  ( 0 ..^ 𝑁 ) )  ∈  Fin ) | 
						
							| 100 | 89 90 99 | mp2an | ⊢ ( ( 0 ..^ 𝑀 )  ×  ( 0 ..^ 𝑁 ) )  ∈  Fin | 
						
							| 101 |  | hashen | ⊢ ( ( ( 0 ..^ ( 𝑀  ·  𝑁 ) )  ∈  Fin  ∧  ( ( 0 ..^ 𝑀 )  ×  ( 0 ..^ 𝑁 ) )  ∈  Fin )  →  ( ( ♯ ‘ ( 0 ..^ ( 𝑀  ·  𝑁 ) ) )  =  ( ♯ ‘ ( ( 0 ..^ 𝑀 )  ×  ( 0 ..^ 𝑁 ) ) )  ↔  ( 0 ..^ ( 𝑀  ·  𝑁 ) )  ≈  ( ( 0 ..^ 𝑀 )  ×  ( 0 ..^ 𝑁 ) ) ) ) | 
						
							| 102 | 98 100 101 | mp2an | ⊢ ( ( ♯ ‘ ( 0 ..^ ( 𝑀  ·  𝑁 ) ) )  =  ( ♯ ‘ ( ( 0 ..^ 𝑀 )  ×  ( 0 ..^ 𝑁 ) ) )  ↔  ( 0 ..^ ( 𝑀  ·  𝑁 ) )  ≈  ( ( 0 ..^ 𝑀 )  ×  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 103 | 97 102 | sylib | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 0 ..^ ( 𝑀  ·  𝑁 ) )  ≈  ( ( 0 ..^ 𝑀 )  ×  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 104 | 84 85 103 | syl2an | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 0 ..^ ( 𝑀  ·  𝑁 ) )  ≈  ( ( 0 ..^ 𝑀 )  ×  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 105 | 8 12 104 | syl2anc | ⊢ ( 𝜑  →  ( 0 ..^ ( 𝑀  ·  𝑁 ) )  ≈  ( ( 0 ..^ 𝑀 )  ×  ( 0 ..^ 𝑁 ) ) ) | 
						
							| 106 | 105 1 2 | 3brtr4g | ⊢ ( 𝜑  →  𝑆  ≈  𝑇 ) | 
						
							| 107 | 2 100 | eqeltri | ⊢ 𝑇  ∈  Fin | 
						
							| 108 |  | f1finf1o | ⊢ ( ( 𝑆  ≈  𝑇  ∧  𝑇  ∈  Fin )  →  ( 𝐹 : 𝑆 –1-1→ 𝑇  ↔  𝐹 : 𝑆 –1-1-onto→ 𝑇 ) ) | 
						
							| 109 | 106 107 108 | sylancl | ⊢ ( 𝜑  →  ( 𝐹 : 𝑆 –1-1→ 𝑇  ↔  𝐹 : 𝑆 –1-1-onto→ 𝑇 ) ) | 
						
							| 110 | 83 109 | mpbid | ⊢ ( 𝜑  →  𝐹 : 𝑆 –1-1-onto→ 𝑇 ) |