| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eulerth.1 |
|- ( ph -> ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) ) |
| 2 |
|
eulerth.2 |
|- S = { y e. ( 0 ..^ N ) | ( y gcd N ) = 1 } |
| 3 |
|
eulerth.3 |
|- T = ( 1 ... ( phi ` N ) ) |
| 4 |
|
eulerth.4 |
|- ( ph -> F : T -1-1-onto-> S ) |
| 5 |
|
eulerth.5 |
|- G = ( x e. T |-> ( ( A x. ( F ` x ) ) mod N ) ) |
| 6 |
1
|
simp2d |
|- ( ph -> A e. ZZ ) |
| 7 |
6
|
adantr |
|- ( ( ph /\ x e. T ) -> A e. ZZ ) |
| 8 |
|
f1of |
|- ( F : T -1-1-onto-> S -> F : T --> S ) |
| 9 |
4 8
|
syl |
|- ( ph -> F : T --> S ) |
| 10 |
9
|
ffvelcdmda |
|- ( ( ph /\ x e. T ) -> ( F ` x ) e. S ) |
| 11 |
|
oveq1 |
|- ( y = ( F ` x ) -> ( y gcd N ) = ( ( F ` x ) gcd N ) ) |
| 12 |
11
|
eqeq1d |
|- ( y = ( F ` x ) -> ( ( y gcd N ) = 1 <-> ( ( F ` x ) gcd N ) = 1 ) ) |
| 13 |
12 2
|
elrab2 |
|- ( ( F ` x ) e. S <-> ( ( F ` x ) e. ( 0 ..^ N ) /\ ( ( F ` x ) gcd N ) = 1 ) ) |
| 14 |
10 13
|
sylib |
|- ( ( ph /\ x e. T ) -> ( ( F ` x ) e. ( 0 ..^ N ) /\ ( ( F ` x ) gcd N ) = 1 ) ) |
| 15 |
14
|
simpld |
|- ( ( ph /\ x e. T ) -> ( F ` x ) e. ( 0 ..^ N ) ) |
| 16 |
|
elfzoelz |
|- ( ( F ` x ) e. ( 0 ..^ N ) -> ( F ` x ) e. ZZ ) |
| 17 |
15 16
|
syl |
|- ( ( ph /\ x e. T ) -> ( F ` x ) e. ZZ ) |
| 18 |
7 17
|
zmulcld |
|- ( ( ph /\ x e. T ) -> ( A x. ( F ` x ) ) e. ZZ ) |
| 19 |
1
|
simp1d |
|- ( ph -> N e. NN ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ x e. T ) -> N e. NN ) |
| 21 |
|
zmodfzo |
|- ( ( ( A x. ( F ` x ) ) e. ZZ /\ N e. NN ) -> ( ( A x. ( F ` x ) ) mod N ) e. ( 0 ..^ N ) ) |
| 22 |
18 20 21
|
syl2anc |
|- ( ( ph /\ x e. T ) -> ( ( A x. ( F ` x ) ) mod N ) e. ( 0 ..^ N ) ) |
| 23 |
|
modgcd |
|- ( ( ( A x. ( F ` x ) ) e. ZZ /\ N e. NN ) -> ( ( ( A x. ( F ` x ) ) mod N ) gcd N ) = ( ( A x. ( F ` x ) ) gcd N ) ) |
| 24 |
18 20 23
|
syl2anc |
|- ( ( ph /\ x e. T ) -> ( ( ( A x. ( F ` x ) ) mod N ) gcd N ) = ( ( A x. ( F ` x ) ) gcd N ) ) |
| 25 |
19
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ x e. T ) -> N e. ZZ ) |
| 27 |
18 26
|
gcdcomd |
|- ( ( ph /\ x e. T ) -> ( ( A x. ( F ` x ) ) gcd N ) = ( N gcd ( A x. ( F ` x ) ) ) ) |
| 28 |
25 6
|
gcdcomd |
|- ( ph -> ( N gcd A ) = ( A gcd N ) ) |
| 29 |
1
|
simp3d |
|- ( ph -> ( A gcd N ) = 1 ) |
| 30 |
28 29
|
eqtrd |
|- ( ph -> ( N gcd A ) = 1 ) |
| 31 |
30
|
adantr |
|- ( ( ph /\ x e. T ) -> ( N gcd A ) = 1 ) |
| 32 |
26 17
|
gcdcomd |
|- ( ( ph /\ x e. T ) -> ( N gcd ( F ` x ) ) = ( ( F ` x ) gcd N ) ) |
| 33 |
14
|
simprd |
|- ( ( ph /\ x e. T ) -> ( ( F ` x ) gcd N ) = 1 ) |
| 34 |
32 33
|
eqtrd |
|- ( ( ph /\ x e. T ) -> ( N gcd ( F ` x ) ) = 1 ) |
| 35 |
|
rpmul |
|- ( ( N e. ZZ /\ A e. ZZ /\ ( F ` x ) e. ZZ ) -> ( ( ( N gcd A ) = 1 /\ ( N gcd ( F ` x ) ) = 1 ) -> ( N gcd ( A x. ( F ` x ) ) ) = 1 ) ) |
| 36 |
26 7 17 35
|
syl3anc |
|- ( ( ph /\ x e. T ) -> ( ( ( N gcd A ) = 1 /\ ( N gcd ( F ` x ) ) = 1 ) -> ( N gcd ( A x. ( F ` x ) ) ) = 1 ) ) |
| 37 |
31 34 36
|
mp2and |
|- ( ( ph /\ x e. T ) -> ( N gcd ( A x. ( F ` x ) ) ) = 1 ) |
| 38 |
24 27 37
|
3eqtrd |
|- ( ( ph /\ x e. T ) -> ( ( ( A x. ( F ` x ) ) mod N ) gcd N ) = 1 ) |
| 39 |
|
oveq1 |
|- ( y = ( ( A x. ( F ` x ) ) mod N ) -> ( y gcd N ) = ( ( ( A x. ( F ` x ) ) mod N ) gcd N ) ) |
| 40 |
39
|
eqeq1d |
|- ( y = ( ( A x. ( F ` x ) ) mod N ) -> ( ( y gcd N ) = 1 <-> ( ( ( A x. ( F ` x ) ) mod N ) gcd N ) = 1 ) ) |
| 41 |
40 2
|
elrab2 |
|- ( ( ( A x. ( F ` x ) ) mod N ) e. S <-> ( ( ( A x. ( F ` x ) ) mod N ) e. ( 0 ..^ N ) /\ ( ( ( A x. ( F ` x ) ) mod N ) gcd N ) = 1 ) ) |
| 42 |
22 38 41
|
sylanbrc |
|- ( ( ph /\ x e. T ) -> ( ( A x. ( F ` x ) ) mod N ) e. S ) |
| 43 |
42 5
|
fmptd |
|- ( ph -> G : T --> S ) |