| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eulerth.1 |
|
| 2 |
|
eulerth.2 |
|
| 3 |
|
eulerth.3 |
|
| 4 |
|
eulerth.4 |
|
| 5 |
|
eulerth.5 |
|
| 6 |
1
|
simp2d |
|
| 7 |
6
|
adantr |
|
| 8 |
|
f1of |
|
| 9 |
4 8
|
syl |
|
| 10 |
9
|
ffvelcdmda |
|
| 11 |
|
oveq1 |
|
| 12 |
11
|
eqeq1d |
|
| 13 |
12 2
|
elrab2 |
|
| 14 |
10 13
|
sylib |
|
| 15 |
14
|
simpld |
|
| 16 |
|
elfzoelz |
|
| 17 |
15 16
|
syl |
|
| 18 |
7 17
|
zmulcld |
|
| 19 |
1
|
simp1d |
|
| 20 |
19
|
adantr |
|
| 21 |
|
zmodfzo |
|
| 22 |
18 20 21
|
syl2anc |
|
| 23 |
|
modgcd |
|
| 24 |
18 20 23
|
syl2anc |
|
| 25 |
19
|
nnzd |
|
| 26 |
25
|
adantr |
|
| 27 |
18 26
|
gcdcomd |
|
| 28 |
25 6
|
gcdcomd |
|
| 29 |
1
|
simp3d |
|
| 30 |
28 29
|
eqtrd |
|
| 31 |
30
|
adantr |
|
| 32 |
26 17
|
gcdcomd |
|
| 33 |
14
|
simprd |
|
| 34 |
32 33
|
eqtrd |
|
| 35 |
|
rpmul |
|
| 36 |
26 7 17 35
|
syl3anc |
|
| 37 |
31 34 36
|
mp2and |
|
| 38 |
24 27 37
|
3eqtrd |
|
| 39 |
|
oveq1 |
|
| 40 |
39
|
eqeq1d |
|
| 41 |
40 2
|
elrab2 |
|
| 42 |
22 38 41
|
sylanbrc |
|
| 43 |
42 5
|
fmptd |
|