Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Euler's theorem
eulerthlem2
Next ⟩
eulerth
Metamath Proof Explorer
Ascii
Unicode
Theorem
eulerthlem2
Description:
Lemma for
eulerth
.
(Contributed by
Mario Carneiro
, 28-Feb-2014)
Ref
Expression
Hypotheses
eulerth.1
⊢
φ
→
N
∈
ℕ
∧
A
∈
ℤ
∧
A
gcd
N
=
1
eulerth.2
⊢
S
=
y
∈
0
..^
N
|
y
gcd
N
=
1
eulerth.3
ϕ
⊢
T
=
1
…
ϕ
N
eulerth.4
⊢
φ
→
F
:
T
⟶
1-1 onto
S
eulerth.5
⊢
G
=
x
∈
T
⟼
A
F
x
mod
N
Assertion
eulerthlem2
ϕ
⊢
φ
→
A
ϕ
N
mod
N
=
1
mod
N
Proof
Step
Hyp
Ref
Expression
1
eulerth.1
⊢
φ
→
N
∈
ℕ
∧
A
∈
ℤ
∧
A
gcd
N
=
1
2
eulerth.2
⊢
S
=
y
∈
0
..^
N
|
y
gcd
N
=
1
3
eulerth.3
ϕ
⊢
T
=
1
…
ϕ
N
4
eulerth.4
⊢
φ
→
F
:
T
⟶
1-1 onto
S
5
eulerth.5
⊢
G
=
x
∈
T
⟼
A
F
x
mod
N
6
1
simp1d
⊢
φ
→
N
∈
ℕ
7
6
phicld
ϕ
⊢
φ
→
ϕ
N
∈
ℕ
8
7
nnred
ϕ
⊢
φ
→
ϕ
N
∈
ℝ
9
8
leidd
ϕ
ϕ
⊢
φ
→
ϕ
N
≤
ϕ
N
10
7
adantr
ϕ
ϕ
ϕ
⊢
φ
∧
ϕ
N
≤
ϕ
N
→
ϕ
N
∈
ℕ
11
breq1
ϕ
ϕ
⊢
x
=
1
→
x
≤
ϕ
N
↔
1
≤
ϕ
N
12
11
anbi2d
ϕ
ϕ
⊢
x
=
1
→
φ
∧
x
≤
ϕ
N
↔
φ
∧
1
≤
ϕ
N
13
oveq2
⊢
x
=
1
→
A
x
=
A
1
14
fveq2
⊢
x
=
1
→
seq
1
×
F
x
=
seq
1
×
F
1
15
13
14
oveq12d
⊢
x
=
1
→
A
x
seq
1
×
F
x
=
A
1
seq
1
×
F
1
16
15
oveq1d
⊢
x
=
1
→
A
x
seq
1
×
F
x
mod
N
=
A
1
seq
1
×
F
1
mod
N
17
fveq2
⊢
x
=
1
→
seq
1
×
G
x
=
seq
1
×
G
1
18
17
oveq1d
⊢
x
=
1
→
seq
1
×
G
x
mod
N
=
seq
1
×
G
1
mod
N
19
16
18
eqeq12d
⊢
x
=
1
→
A
x
seq
1
×
F
x
mod
N
=
seq
1
×
G
x
mod
N
↔
A
1
seq
1
×
F
1
mod
N
=
seq
1
×
G
1
mod
N
20
14
oveq2d
⊢
x
=
1
→
N
gcd
seq
1
×
F
x
=
N
gcd
seq
1
×
F
1
21
20
eqeq1d
⊢
x
=
1
→
N
gcd
seq
1
×
F
x
=
1
↔
N
gcd
seq
1
×
F
1
=
1
22
19
21
anbi12d
⊢
x
=
1
→
A
x
seq
1
×
F
x
mod
N
=
seq
1
×
G
x
mod
N
∧
N
gcd
seq
1
×
F
x
=
1
↔
A
1
seq
1
×
F
1
mod
N
=
seq
1
×
G
1
mod
N
∧
N
gcd
seq
1
×
F
1
=
1
23
12
22
imbi12d
ϕ
ϕ
⊢
x
=
1
→
φ
∧
x
≤
ϕ
N
→
A
x
seq
1
×
F
x
mod
N
=
seq
1
×
G
x
mod
N
∧
N
gcd
seq
1
×
F
x
=
1
↔
φ
∧
1
≤
ϕ
N
→
A
1
seq
1
×
F
1
mod
N
=
seq
1
×
G
1
mod
N
∧
N
gcd
seq
1
×
F
1
=
1
24
breq1
ϕ
ϕ
⊢
x
=
z
→
x
≤
ϕ
N
↔
z
≤
ϕ
N
25
24
anbi2d
ϕ
ϕ
⊢
x
=
z
→
φ
∧
x
≤
ϕ
N
↔
φ
∧
z
≤
ϕ
N
26
oveq2
⊢
x
=
z
→
A
x
=
A
z
27
fveq2
⊢
x
=
z
→
seq
1
×
F
x
=
seq
1
×
F
z
28
26
27
oveq12d
⊢
x
=
z
→
A
x
seq
1
×
F
x
=
A
z
seq
1
×
F
z
29
28
oveq1d
⊢
x
=
z
→
A
x
seq
1
×
F
x
mod
N
=
A
z
seq
1
×
F
z
mod
N
30
fveq2
⊢
x
=
z
→
seq
1
×
G
x
=
seq
1
×
G
z
31
30
oveq1d
⊢
x
=
z
→
seq
1
×
G
x
mod
N
=
seq
1
×
G
z
mod
N
32
29
31
eqeq12d
⊢
x
=
z
→
A
x
seq
1
×
F
x
mod
N
=
seq
1
×
G
x
mod
N
↔
A
z
seq
1
×
F
z
mod
N
=
seq
1
×
G
z
mod
N
33
27
oveq2d
⊢
x
=
z
→
N
gcd
seq
1
×
F
x
=
N
gcd
seq
1
×
F
z
34
33
eqeq1d
⊢
x
=
z
→
N
gcd
seq
1
×
F
x
=
1
↔
N
gcd
seq
1
×
F
z
=
1
35
32
34
anbi12d
⊢
x
=
z
→
A
x
seq
1
×
F
x
mod
N
=
seq
1
×
G
x
mod
N
∧
N
gcd
seq
1
×
F
x
=
1
↔
A
z
seq
1
×
F
z
mod
N
=
seq
1
×
G
z
mod
N
∧
N
gcd
seq
1
×
F
z
=
1
36
25
35
imbi12d
ϕ
ϕ
⊢
x
=
z
→
φ
∧
x
≤
ϕ
N
→
A
x
seq
1
×
F
x
mod
N
=
seq
1
×
G
x
mod
N
∧
N
gcd
seq
1
×
F
x
=
1
↔
φ
∧
z
≤
ϕ
N
→
A
z
seq
1
×
F
z
mod
N
=
seq
1
×
G
z
mod
N
∧
N
gcd
seq
1
×
F
z
=
1
37
breq1
ϕ
ϕ
⊢
x
=
z
+
1
→
x
≤
ϕ
N
↔
z
+
1
≤
ϕ
N
38
37
anbi2d
ϕ
ϕ
⊢
x
=
z
+
1
→
φ
∧
x
≤
ϕ
N
↔
φ
∧
z
+
1
≤
ϕ
N
39
oveq2
⊢
x
=
z
+
1
→
A
x
=
A
z
+
1
40
fveq2
⊢
x
=
z
+
1
→
seq
1
×
F
x
=
seq
1
×
F
z
+
1
41
39
40
oveq12d
⊢
x
=
z
+
1
→
A
x
seq
1
×
F
x
=
A
z
+
1
seq
1
×
F
z
+
1
42
41
oveq1d
⊢
x
=
z
+
1
→
A
x
seq
1
×
F
x
mod
N
=
A
z
+
1
seq
1
×
F
z
+
1
mod
N
43
fveq2
⊢
x
=
z
+
1
→
seq
1
×
G
x
=
seq
1
×
G
z
+
1
44
43
oveq1d
⊢
x
=
z
+
1
→
seq
1
×
G
x
mod
N
=
seq
1
×
G
z
+
1
mod
N
45
42
44
eqeq12d
⊢
x
=
z
+
1
→
A
x
seq
1
×
F
x
mod
N
=
seq
1
×
G
x
mod
N
↔
A
z
+
1
seq
1
×
F
z
+
1
mod
N
=
seq
1
×
G
z
+
1
mod
N
46
40
oveq2d
⊢
x
=
z
+
1
→
N
gcd
seq
1
×
F
x
=
N
gcd
seq
1
×
F
z
+
1
47
46
eqeq1d
⊢
x
=
z
+
1
→
N
gcd
seq
1
×
F
x
=
1
↔
N
gcd
seq
1
×
F
z
+
1
=
1
48
45
47
anbi12d
⊢
x
=
z
+
1
→
A
x
seq
1
×
F
x
mod
N
=
seq
1
×
G
x
mod
N
∧
N
gcd
seq
1
×
F
x
=
1
↔
A
z
+
1
seq
1
×
F
z
+
1
mod
N
=
seq
1
×
G
z
+
1
mod
N
∧
N
gcd
seq
1
×
F
z
+
1
=
1
49
38
48
imbi12d
ϕ
ϕ
⊢
x
=
z
+
1
→
φ
∧
x
≤
ϕ
N
→
A
x
seq
1
×
F
x
mod
N
=
seq
1
×
G
x
mod
N
∧
N
gcd
seq
1
×
F
x
=
1
↔
φ
∧
z
+
1
≤
ϕ
N
→
A
z
+
1
seq
1
×
F
z
+
1
mod
N
=
seq
1
×
G
z
+
1
mod
N
∧
N
gcd
seq
1
×
F
z
+
1
=
1
50
breq1
ϕ
ϕ
ϕ
ϕ
⊢
x
=
ϕ
N
→
x
≤
ϕ
N
↔
ϕ
N
≤
ϕ
N
51
50
anbi2d
ϕ
ϕ
ϕ
ϕ
⊢
x
=
ϕ
N
→
φ
∧
x
≤
ϕ
N
↔
φ
∧
ϕ
N
≤
ϕ
N
52
oveq2
ϕ
ϕ
⊢
x
=
ϕ
N
→
A
x
=
A
ϕ
N
53
fveq2
ϕ
ϕ
⊢
x
=
ϕ
N
→
seq
1
×
F
x
=
seq
1
×
F
ϕ
N
54
52
53
oveq12d
ϕ
ϕ
ϕ
⊢
x
=
ϕ
N
→
A
x
seq
1
×
F
x
=
A
ϕ
N
seq
1
×
F
ϕ
N
55
54
oveq1d
ϕ
ϕ
ϕ
⊢
x
=
ϕ
N
→
A
x
seq
1
×
F
x
mod
N
=
A
ϕ
N
seq
1
×
F
ϕ
N
mod
N
56
fveq2
ϕ
ϕ
⊢
x
=
ϕ
N
→
seq
1
×
G
x
=
seq
1
×
G
ϕ
N
57
56
oveq1d
ϕ
ϕ
⊢
x
=
ϕ
N
→
seq
1
×
G
x
mod
N
=
seq
1
×
G
ϕ
N
mod
N
58
55
57
eqeq12d
ϕ
ϕ
ϕ
ϕ
⊢
x
=
ϕ
N
→
A
x
seq
1
×
F
x
mod
N
=
seq
1
×
G
x
mod
N
↔
A
ϕ
N
seq
1
×
F
ϕ
N
mod
N
=
seq
1
×
G
ϕ
N
mod
N
59
53
oveq2d
ϕ
ϕ
⊢
x
=
ϕ
N
→
N
gcd
seq
1
×
F
x
=
N
gcd
seq
1
×
F
ϕ
N
60
59
eqeq1d
ϕ
ϕ
⊢
x
=
ϕ
N
→
N
gcd
seq
1
×
F
x
=
1
↔
N
gcd
seq
1
×
F
ϕ
N
=
1
61
58
60
anbi12d
ϕ
ϕ
ϕ
ϕ
ϕ
⊢
x
=
ϕ
N
→
A
x
seq
1
×
F
x
mod
N
=
seq
1
×
G
x
mod
N
∧
N
gcd
seq
1
×
F
x
=
1
↔
A
ϕ
N
seq
1
×
F
ϕ
N
mod
N
=
seq
1
×
G
ϕ
N
mod
N
∧
N
gcd
seq
1
×
F
ϕ
N
=
1
62
51
61
imbi12d
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
⊢
x
=
ϕ
N
→
φ
∧
x
≤
ϕ
N
→
A
x
seq
1
×
F
x
mod
N
=
seq
1
×
G
x
mod
N
∧
N
gcd
seq
1
×
F
x
=
1
↔
φ
∧
ϕ
N
≤
ϕ
N
→
A
ϕ
N
seq
1
×
F
ϕ
N
mod
N
=
seq
1
×
G
ϕ
N
mod
N
∧
N
gcd
seq
1
×
F
ϕ
N
=
1
63
1
simp2d
⊢
φ
→
A
∈
ℤ
64
f1of
⊢
F
:
T
⟶
1-1 onto
S
→
F
:
T
⟶
S
65
4
64
syl
⊢
φ
→
F
:
T
⟶
S
66
nnuz
⊢
ℕ
=
ℤ
≥
1
67
7
66
eleqtrdi
ϕ
⊢
φ
→
ϕ
N
∈
ℤ
≥
1
68
eluzfz1
ϕ
ϕ
⊢
ϕ
N
∈
ℤ
≥
1
→
1
∈
1
…
ϕ
N
69
67
68
syl
ϕ
⊢
φ
→
1
∈
1
…
ϕ
N
70
69
3
eleqtrrdi
⊢
φ
→
1
∈
T
71
65
70
ffvelcdmd
⊢
φ
→
F
1
∈
S
72
oveq1
⊢
y
=
F
1
→
y
gcd
N
=
F
1
gcd
N
73
72
eqeq1d
⊢
y
=
F
1
→
y
gcd
N
=
1
↔
F
1
gcd
N
=
1
74
73
2
elrab2
⊢
F
1
∈
S
↔
F
1
∈
0
..^
N
∧
F
1
gcd
N
=
1
75
71
74
sylib
⊢
φ
→
F
1
∈
0
..^
N
∧
F
1
gcd
N
=
1
76
75
simpld
⊢
φ
→
F
1
∈
0
..^
N
77
elfzoelz
⊢
F
1
∈
0
..^
N
→
F
1
∈
ℤ
78
76
77
syl
⊢
φ
→
F
1
∈
ℤ
79
63
78
zmulcld
⊢
φ
→
A
F
1
∈
ℤ
80
79
zred
⊢
φ
→
A
F
1
∈
ℝ
81
6
nnrpd
⊢
φ
→
N
∈
ℝ
+
82
modabs2
⊢
A
F
1
∈
ℝ
∧
N
∈
ℝ
+
→
A
F
1
mod
N
mod
N
=
A
F
1
mod
N
83
80
81
82
syl2anc
⊢
φ
→
A
F
1
mod
N
mod
N
=
A
F
1
mod
N
84
1z
⊢
1
∈
ℤ
85
fveq2
⊢
x
=
1
→
F
x
=
F
1
86
85
oveq2d
⊢
x
=
1
→
A
F
x
=
A
F
1
87
86
oveq1d
⊢
x
=
1
→
A
F
x
mod
N
=
A
F
1
mod
N
88
ovex
⊢
A
F
1
mod
N
∈
V
89
87
5
88
fvmpt
⊢
1
∈
T
→
G
1
=
A
F
1
mod
N
90
70
89
syl
⊢
φ
→
G
1
=
A
F
1
mod
N
91
84
90
seq1i
⊢
φ
→
seq
1
×
G
1
=
A
F
1
mod
N
92
91
oveq1d
⊢
φ
→
seq
1
×
G
1
mod
N
=
A
F
1
mod
N
mod
N
93
63
zcnd
⊢
φ
→
A
∈
ℂ
94
93
exp1d
⊢
φ
→
A
1
=
A
95
seq1
⊢
1
∈
ℤ
→
seq
1
×
F
1
=
F
1
96
84
95
ax-mp
⊢
seq
1
×
F
1
=
F
1
97
96
a1i
⊢
φ
→
seq
1
×
F
1
=
F
1
98
94
97
oveq12d
⊢
φ
→
A
1
seq
1
×
F
1
=
A
F
1
99
98
oveq1d
⊢
φ
→
A
1
seq
1
×
F
1
mod
N
=
A
F
1
mod
N
100
83
92
99
3eqtr4rd
⊢
φ
→
A
1
seq
1
×
F
1
mod
N
=
seq
1
×
G
1
mod
N
101
96
oveq2i
⊢
N
gcd
seq
1
×
F
1
=
N
gcd
F
1
102
6
nnzd
⊢
φ
→
N
∈
ℤ
103
102
78
gcdcomd
⊢
φ
→
N
gcd
F
1
=
F
1
gcd
N
104
75
simprd
⊢
φ
→
F
1
gcd
N
=
1
105
103
104
eqtrd
⊢
φ
→
N
gcd
F
1
=
1
106
101
105
eqtrid
⊢
φ
→
N
gcd
seq
1
×
F
1
=
1
107
100
106
jca
⊢
φ
→
A
1
seq
1
×
F
1
mod
N
=
seq
1
×
G
1
mod
N
∧
N
gcd
seq
1
×
F
1
=
1
108
107
adantr
ϕ
⊢
φ
∧
1
≤
ϕ
N
→
A
1
seq
1
×
F
1
mod
N
=
seq
1
×
G
1
mod
N
∧
N
gcd
seq
1
×
F
1
=
1
109
nnre
⊢
z
∈
ℕ
→
z
∈
ℝ
110
109
adantr
⊢
z
∈
ℕ
∧
φ
→
z
∈
ℝ
111
110
lep1d
⊢
z
∈
ℕ
∧
φ
→
z
≤
z
+
1
112
peano2re
⊢
z
∈
ℝ
→
z
+
1
∈
ℝ
113
110
112
syl
⊢
z
∈
ℕ
∧
φ
→
z
+
1
∈
ℝ
114
8
adantl
ϕ
⊢
z
∈
ℕ
∧
φ
→
ϕ
N
∈
ℝ
115
letr
ϕ
ϕ
ϕ
⊢
z
∈
ℝ
∧
z
+
1
∈
ℝ
∧
ϕ
N
∈
ℝ
→
z
≤
z
+
1
∧
z
+
1
≤
ϕ
N
→
z
≤
ϕ
N
116
110
113
114
115
syl3anc
ϕ
ϕ
⊢
z
∈
ℕ
∧
φ
→
z
≤
z
+
1
∧
z
+
1
≤
ϕ
N
→
z
≤
ϕ
N
117
111
116
mpand
ϕ
ϕ
⊢
z
∈
ℕ
∧
φ
→
z
+
1
≤
ϕ
N
→
z
≤
ϕ
N
118
117
imdistanda
ϕ
ϕ
⊢
z
∈
ℕ
→
φ
∧
z
+
1
≤
ϕ
N
→
φ
∧
z
≤
ϕ
N
119
118
imim1d
ϕ
ϕ
⊢
z
∈
ℕ
→
φ
∧
z
≤
ϕ
N
→
A
z
seq
1
×
F
z
mod
N
=
seq
1
×
G
z
mod
N
∧
N
gcd
seq
1
×
F
z
=
1
→
φ
∧
z
+
1
≤
ϕ
N
→
A
z
seq
1
×
F
z
mod
N
=
seq
1
×
G
z
mod
N
∧
N
gcd
seq
1
×
F
z
=
1
120
63
adantr
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
A
∈
ℤ
121
nnnn0
⊢
z
∈
ℕ
→
z
∈
ℕ
0
122
121
ad2antrl
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
z
∈
ℕ
0
123
zexpcl
⊢
A
∈
ℤ
∧
z
∈
ℕ
0
→
A
z
∈
ℤ
124
120
122
123
syl2anc
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
A
z
∈
ℤ
125
simprl
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
z
∈
ℕ
126
125
66
eleqtrdi
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
z
∈
ℤ
≥
1
127
109
ad2antrl
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
z
∈
ℝ
128
127
112
syl
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
z
+
1
∈
ℝ
129
8
adantr
ϕ
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
ϕ
N
∈
ℝ
130
127
lep1d
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
z
≤
z
+
1
131
simprr
ϕ
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
z
+
1
≤
ϕ
N
132
127
128
129
130
131
letrd
ϕ
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
z
≤
ϕ
N
133
nnz
⊢
z
∈
ℕ
→
z
∈
ℤ
134
133
ad2antrl
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
z
∈
ℤ
135
7
nnzd
ϕ
⊢
φ
→
ϕ
N
∈
ℤ
136
135
adantr
ϕ
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
ϕ
N
∈
ℤ
137
eluz
ϕ
ϕ
ϕ
⊢
z
∈
ℤ
∧
ϕ
N
∈
ℤ
→
ϕ
N
∈
ℤ
≥
z
↔
z
≤
ϕ
N
138
134
136
137
syl2anc
ϕ
ϕ
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
ϕ
N
∈
ℤ
≥
z
↔
z
≤
ϕ
N
139
132
138
mpbird
ϕ
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
ϕ
N
∈
ℤ
≥
z
140
fzss2
ϕ
ϕ
⊢
ϕ
N
∈
ℤ
≥
z
→
1
…
z
⊆
1
…
ϕ
N
141
139
140
syl
ϕ
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
1
…
z
⊆
1
…
ϕ
N
142
141
3
sseqtrrdi
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
1
…
z
⊆
T
143
142
sselda
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
∧
x
∈
1
…
z
→
x
∈
T
144
65
ffvelcdmda
⊢
φ
∧
x
∈
T
→
F
x
∈
S
145
oveq1
⊢
y
=
F
x
→
y
gcd
N
=
F
x
gcd
N
146
145
eqeq1d
⊢
y
=
F
x
→
y
gcd
N
=
1
↔
F
x
gcd
N
=
1
147
146
2
elrab2
⊢
F
x
∈
S
↔
F
x
∈
0
..^
N
∧
F
x
gcd
N
=
1
148
144
147
sylib
⊢
φ
∧
x
∈
T
→
F
x
∈
0
..^
N
∧
F
x
gcd
N
=
1
149
148
simpld
⊢
φ
∧
x
∈
T
→
F
x
∈
0
..^
N
150
elfzoelz
⊢
F
x
∈
0
..^
N
→
F
x
∈
ℤ
151
149
150
syl
⊢
φ
∧
x
∈
T
→
F
x
∈
ℤ
152
151
adantlr
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
∧
x
∈
T
→
F
x
∈
ℤ
153
143
152
syldan
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
∧
x
∈
1
…
z
→
F
x
∈
ℤ
154
zmulcl
⊢
x
∈
ℤ
∧
y
∈
ℤ
→
x
y
∈
ℤ
155
154
adantl
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
∧
x
∈
ℤ
∧
y
∈
ℤ
→
x
y
∈
ℤ
156
126
153
155
seqcl
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
seq
1
×
F
z
∈
ℤ
157
124
156
zmulcld
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
A
z
seq
1
×
F
z
∈
ℤ
158
157
zred
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
A
z
seq
1
×
F
z
∈
ℝ
159
2
ssrab3
⊢
S
⊆
0
..^
N
160
1
2
3
4
5
eulerthlem1
⊢
φ
→
G
:
T
⟶
S
161
160
ffvelcdmda
⊢
φ
∧
x
∈
T
→
G
x
∈
S
162
159
161
sselid
⊢
φ
∧
x
∈
T
→
G
x
∈
0
..^
N
163
elfzoelz
⊢
G
x
∈
0
..^
N
→
G
x
∈
ℤ
164
162
163
syl
⊢
φ
∧
x
∈
T
→
G
x
∈
ℤ
165
164
adantlr
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
∧
x
∈
T
→
G
x
∈
ℤ
166
143
165
syldan
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
∧
x
∈
1
…
z
→
G
x
∈
ℤ
167
126
166
155
seqcl
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
seq
1
×
G
z
∈
ℤ
168
167
zred
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
seq
1
×
G
z
∈
ℝ
169
65
adantr
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
F
:
T
⟶
S
170
peano2nn
⊢
z
∈
ℕ
→
z
+
1
∈
ℕ
171
170
ad2antrl
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
z
+
1
∈
ℕ
172
171
nnge1d
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
1
≤
z
+
1
173
171
nnzd
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
z
+
1
∈
ℤ
174
elfz
ϕ
ϕ
ϕ
⊢
z
+
1
∈
ℤ
∧
1
∈
ℤ
∧
ϕ
N
∈
ℤ
→
z
+
1
∈
1
…
ϕ
N
↔
1
≤
z
+
1
∧
z
+
1
≤
ϕ
N
175
84
174
mp3an2
ϕ
ϕ
ϕ
⊢
z
+
1
∈
ℤ
∧
ϕ
N
∈
ℤ
→
z
+
1
∈
1
…
ϕ
N
↔
1
≤
z
+
1
∧
z
+
1
≤
ϕ
N
176
173
136
175
syl2anc
ϕ
ϕ
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
z
+
1
∈
1
…
ϕ
N
↔
1
≤
z
+
1
∧
z
+
1
≤
ϕ
N
177
172
131
176
mpbir2and
ϕ
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
z
+
1
∈
1
…
ϕ
N
178
177
3
eleqtrrdi
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
z
+
1
∈
T
179
169
178
ffvelcdmd
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
F
z
+
1
∈
S
180
oveq1
⊢
y
=
F
z
+
1
→
y
gcd
N
=
F
z
+
1
gcd
N
181
180
eqeq1d
⊢
y
=
F
z
+
1
→
y
gcd
N
=
1
↔
F
z
+
1
gcd
N
=
1
182
181
2
elrab2
⊢
F
z
+
1
∈
S
↔
F
z
+
1
∈
0
..^
N
∧
F
z
+
1
gcd
N
=
1
183
179
182
sylib
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
F
z
+
1
∈
0
..^
N
∧
F
z
+
1
gcd
N
=
1
184
183
simpld
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
F
z
+
1
∈
0
..^
N
185
elfzoelz
⊢
F
z
+
1
∈
0
..^
N
→
F
z
+
1
∈
ℤ
186
184
185
syl
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
F
z
+
1
∈
ℤ
187
120
186
zmulcld
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
A
F
z
+
1
∈
ℤ
188
81
adantr
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
N
∈
ℝ
+
189
modmul1
⊢
A
z
seq
1
×
F
z
∈
ℝ
∧
seq
1
×
G
z
∈
ℝ
∧
A
F
z
+
1
∈
ℤ
∧
N
∈
ℝ
+
∧
A
z
seq
1
×
F
z
mod
N
=
seq
1
×
G
z
mod
N
→
A
z
seq
1
×
F
z
A
F
z
+
1
mod
N
=
seq
1
×
G
z
A
F
z
+
1
mod
N
190
189
3expia
⊢
A
z
seq
1
×
F
z
∈
ℝ
∧
seq
1
×
G
z
∈
ℝ
∧
A
F
z
+
1
∈
ℤ
∧
N
∈
ℝ
+
→
A
z
seq
1
×
F
z
mod
N
=
seq
1
×
G
z
mod
N
→
A
z
seq
1
×
F
z
A
F
z
+
1
mod
N
=
seq
1
×
G
z
A
F
z
+
1
mod
N
191
158
168
187
188
190
syl22anc
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
A
z
seq
1
×
F
z
mod
N
=
seq
1
×
G
z
mod
N
→
A
z
seq
1
×
F
z
A
F
z
+
1
mod
N
=
seq
1
×
G
z
A
F
z
+
1
mod
N
192
124
zcnd
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
A
z
∈
ℂ
193
156
zcnd
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
seq
1
×
F
z
∈
ℂ
194
93
adantr
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
A
∈
ℂ
195
186
zcnd
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
F
z
+
1
∈
ℂ
196
192
193
194
195
mul4d
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
A
z
seq
1
×
F
z
A
F
z
+
1
=
A
z
A
seq
1
×
F
z
F
z
+
1
197
194
122
expp1d
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
A
z
+
1
=
A
z
A
198
seqp1
⊢
z
∈
ℤ
≥
1
→
seq
1
×
F
z
+
1
=
seq
1
×
F
z
F
z
+
1
199
126
198
syl
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
seq
1
×
F
z
+
1
=
seq
1
×
F
z
F
z
+
1
200
197
199
oveq12d
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
A
z
+
1
seq
1
×
F
z
+
1
=
A
z
A
seq
1
×
F
z
F
z
+
1
201
196
200
eqtr4d
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
A
z
seq
1
×
F
z
A
F
z
+
1
=
A
z
+
1
seq
1
×
F
z
+
1
202
201
oveq1d
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
A
z
seq
1
×
F
z
A
F
z
+
1
mod
N
=
A
z
+
1
seq
1
×
F
z
+
1
mod
N
203
187
zred
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
A
F
z
+
1
∈
ℝ
204
203
188
modcld
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
A
F
z
+
1
mod
N
∈
ℝ
205
modabs2
⊢
A
F
z
+
1
∈
ℝ
∧
N
∈
ℝ
+
→
A
F
z
+
1
mod
N
mod
N
=
A
F
z
+
1
mod
N
206
203
188
205
syl2anc
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
A
F
z
+
1
mod
N
mod
N
=
A
F
z
+
1
mod
N
207
modmul1
⊢
A
F
z
+
1
mod
N
∈
ℝ
∧
A
F
z
+
1
∈
ℝ
∧
seq
1
×
G
z
∈
ℤ
∧
N
∈
ℝ
+
∧
A
F
z
+
1
mod
N
mod
N
=
A
F
z
+
1
mod
N
→
A
F
z
+
1
mod
N
seq
1
×
G
z
mod
N
=
A
F
z
+
1
seq
1
×
G
z
mod
N
208
204
203
167
188
206
207
syl221anc
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
A
F
z
+
1
mod
N
seq
1
×
G
z
mod
N
=
A
F
z
+
1
seq
1
×
G
z
mod
N
209
fveq2
⊢
x
=
z
+
1
→
F
x
=
F
z
+
1
210
209
oveq2d
⊢
x
=
z
+
1
→
A
F
x
=
A
F
z
+
1
211
210
oveq1d
⊢
x
=
z
+
1
→
A
F
x
mod
N
=
A
F
z
+
1
mod
N
212
ovex
⊢
A
F
z
+
1
mod
N
∈
V
213
211
5
212
fvmpt
⊢
z
+
1
∈
T
→
G
z
+
1
=
A
F
z
+
1
mod
N
214
178
213
syl
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
G
z
+
1
=
A
F
z
+
1
mod
N
215
214
oveq2d
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
seq
1
×
G
z
G
z
+
1
=
seq
1
×
G
z
A
F
z
+
1
mod
N
216
seqp1
⊢
z
∈
ℤ
≥
1
→
seq
1
×
G
z
+
1
=
seq
1
×
G
z
G
z
+
1
217
126
216
syl
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
seq
1
×
G
z
+
1
=
seq
1
×
G
z
G
z
+
1
218
204
recnd
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
A
F
z
+
1
mod
N
∈
ℂ
219
167
zcnd
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
seq
1
×
G
z
∈
ℂ
220
218
219
mulcomd
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
A
F
z
+
1
mod
N
seq
1
×
G
z
=
seq
1
×
G
z
A
F
z
+
1
mod
N
221
215
217
220
3eqtr4d
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
seq
1
×
G
z
+
1
=
A
F
z
+
1
mod
N
seq
1
×
G
z
222
221
oveq1d
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
seq
1
×
G
z
+
1
mod
N
=
A
F
z
+
1
mod
N
seq
1
×
G
z
mod
N
223
187
zcnd
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
A
F
z
+
1
∈
ℂ
224
219
223
mulcomd
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
seq
1
×
G
z
A
F
z
+
1
=
A
F
z
+
1
seq
1
×
G
z
225
224
oveq1d
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
seq
1
×
G
z
A
F
z
+
1
mod
N
=
A
F
z
+
1
seq
1
×
G
z
mod
N
226
208
222
225
3eqtr4rd
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
seq
1
×
G
z
A
F
z
+
1
mod
N
=
seq
1
×
G
z
+
1
mod
N
227
202
226
eqeq12d
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
A
z
seq
1
×
F
z
A
F
z
+
1
mod
N
=
seq
1
×
G
z
A
F
z
+
1
mod
N
↔
A
z
+
1
seq
1
×
F
z
+
1
mod
N
=
seq
1
×
G
z
+
1
mod
N
228
191
227
sylibd
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
A
z
seq
1
×
F
z
mod
N
=
seq
1
×
G
z
mod
N
→
A
z
+
1
seq
1
×
F
z
+
1
mod
N
=
seq
1
×
G
z
+
1
mod
N
229
102
adantr
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
N
∈
ℤ
230
229
186
gcdcomd
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
N
gcd
F
z
+
1
=
F
z
+
1
gcd
N
231
183
simprd
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
F
z
+
1
gcd
N
=
1
232
230
231
eqtrd
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
N
gcd
F
z
+
1
=
1
233
rpmul
⊢
N
∈
ℤ
∧
seq
1
×
F
z
∈
ℤ
∧
F
z
+
1
∈
ℤ
→
N
gcd
seq
1
×
F
z
=
1
∧
N
gcd
F
z
+
1
=
1
→
N
gcd
seq
1
×
F
z
F
z
+
1
=
1
234
229
156
186
233
syl3anc
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
N
gcd
seq
1
×
F
z
=
1
∧
N
gcd
F
z
+
1
=
1
→
N
gcd
seq
1
×
F
z
F
z
+
1
=
1
235
232
234
mpan2d
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
N
gcd
seq
1
×
F
z
=
1
→
N
gcd
seq
1
×
F
z
F
z
+
1
=
1
236
199
oveq2d
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
N
gcd
seq
1
×
F
z
+
1
=
N
gcd
seq
1
×
F
z
F
z
+
1
237
236
eqeq1d
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
N
gcd
seq
1
×
F
z
+
1
=
1
↔
N
gcd
seq
1
×
F
z
F
z
+
1
=
1
238
235
237
sylibrd
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
N
gcd
seq
1
×
F
z
=
1
→
N
gcd
seq
1
×
F
z
+
1
=
1
239
228
238
anim12d
ϕ
⊢
φ
∧
z
∈
ℕ
∧
z
+
1
≤
ϕ
N
→
A
z
seq
1
×
F
z
mod
N
=
seq
1
×
G
z
mod
N
∧
N
gcd
seq
1
×
F
z
=
1
→
A
z
+
1
seq
1
×
F
z
+
1
mod
N
=
seq
1
×
G
z
+
1
mod
N
∧
N
gcd
seq
1
×
F
z
+
1
=
1
240
239
an12s
ϕ
⊢
z
∈
ℕ
∧
φ
∧
z
+
1
≤
ϕ
N
→
A
z
seq
1
×
F
z
mod
N
=
seq
1
×
G
z
mod
N
∧
N
gcd
seq
1
×
F
z
=
1
→
A
z
+
1
seq
1
×
F
z
+
1
mod
N
=
seq
1
×
G
z
+
1
mod
N
∧
N
gcd
seq
1
×
F
z
+
1
=
1
241
240
ex
ϕ
⊢
z
∈
ℕ
→
φ
∧
z
+
1
≤
ϕ
N
→
A
z
seq
1
×
F
z
mod
N
=
seq
1
×
G
z
mod
N
∧
N
gcd
seq
1
×
F
z
=
1
→
A
z
+
1
seq
1
×
F
z
+
1
mod
N
=
seq
1
×
G
z
+
1
mod
N
∧
N
gcd
seq
1
×
F
z
+
1
=
1
242
241
a2d
ϕ
ϕ
⊢
z
∈
ℕ
→
φ
∧
z
+
1
≤
ϕ
N
→
A
z
seq
1
×
F
z
mod
N
=
seq
1
×
G
z
mod
N
∧
N
gcd
seq
1
×
F
z
=
1
→
φ
∧
z
+
1
≤
ϕ
N
→
A
z
+
1
seq
1
×
F
z
+
1
mod
N
=
seq
1
×
G
z
+
1
mod
N
∧
N
gcd
seq
1
×
F
z
+
1
=
1
243
119
242
syld
ϕ
ϕ
⊢
z
∈
ℕ
→
φ
∧
z
≤
ϕ
N
→
A
z
seq
1
×
F
z
mod
N
=
seq
1
×
G
z
mod
N
∧
N
gcd
seq
1
×
F
z
=
1
→
φ
∧
z
+
1
≤
ϕ
N
→
A
z
+
1
seq
1
×
F
z
+
1
mod
N
=
seq
1
×
G
z
+
1
mod
N
∧
N
gcd
seq
1
×
F
z
+
1
=
1
244
23
36
49
62
108
243
nnind
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
⊢
ϕ
N
∈
ℕ
→
φ
∧
ϕ
N
≤
ϕ
N
→
A
ϕ
N
seq
1
×
F
ϕ
N
mod
N
=
seq
1
×
G
ϕ
N
mod
N
∧
N
gcd
seq
1
×
F
ϕ
N
=
1
245
10
244
mpcom
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
⊢
φ
∧
ϕ
N
≤
ϕ
N
→
A
ϕ
N
seq
1
×
F
ϕ
N
mod
N
=
seq
1
×
G
ϕ
N
mod
N
∧
N
gcd
seq
1
×
F
ϕ
N
=
1
246
9
245
mpdan
ϕ
ϕ
ϕ
ϕ
⊢
φ
→
A
ϕ
N
seq
1
×
F
ϕ
N
mod
N
=
seq
1
×
G
ϕ
N
mod
N
∧
N
gcd
seq
1
×
F
ϕ
N
=
1
247
246
simpld
ϕ
ϕ
ϕ
⊢
φ
→
A
ϕ
N
seq
1
×
F
ϕ
N
mod
N
=
seq
1
×
G
ϕ
N
mod
N
248
7
nnnn0d
ϕ
⊢
φ
→
ϕ
N
∈
ℕ
0
249
zexpcl
ϕ
ϕ
⊢
A
∈
ℤ
∧
ϕ
N
∈
ℕ
0
→
A
ϕ
N
∈
ℤ
250
63
248
249
syl2anc
ϕ
⊢
φ
→
A
ϕ
N
∈
ℤ
251
3
eleq2i
ϕ
⊢
x
∈
T
↔
x
∈
1
…
ϕ
N
252
251
151
sylan2br
ϕ
⊢
φ
∧
x
∈
1
…
ϕ
N
→
F
x
∈
ℤ
253
154
adantl
⊢
φ
∧
x
∈
ℤ
∧
y
∈
ℤ
→
x
y
∈
ℤ
254
67
252
253
seqcl
ϕ
⊢
φ
→
seq
1
×
F
ϕ
N
∈
ℤ
255
250
254
zmulcld
ϕ
ϕ
⊢
φ
→
A
ϕ
N
seq
1
×
F
ϕ
N
∈
ℤ
256
mulcl
⊢
x
∈
ℂ
∧
y
∈
ℂ
→
x
y
∈
ℂ
257
256
adantl
⊢
φ
∧
x
∈
ℂ
∧
y
∈
ℂ
→
x
y
∈
ℂ
258
mulcom
⊢
x
∈
ℂ
∧
y
∈
ℂ
→
x
y
=
y
x
259
258
adantl
⊢
φ
∧
x
∈
ℂ
∧
y
∈
ℂ
→
x
y
=
y
x
260
mulass
⊢
x
∈
ℂ
∧
y
∈
ℂ
∧
z
∈
ℂ
→
x
y
z
=
x
y
z
261
260
adantl
⊢
φ
∧
x
∈
ℂ
∧
y
∈
ℂ
∧
z
∈
ℂ
→
x
y
z
=
x
y
z
262
ssidd
⊢
φ
→
ℂ
⊆
ℂ
263
f1ocnv
⊢
F
:
T
⟶
1-1 onto
S
→
F
-1
:
S
⟶
1-1 onto
T
264
4
263
syl
⊢
φ
→
F
-1
:
S
⟶
1-1 onto
T
265
6
adantr
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
N
∈
ℕ
266
63
adantr
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
A
∈
ℤ
267
65
ffvelcdmda
⊢
φ
∧
y
∈
T
→
F
y
∈
S
268
267
adantrr
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
F
y
∈
S
269
159
268
sselid
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
F
y
∈
0
..^
N
270
elfzoelz
⊢
F
y
∈
0
..^
N
→
F
y
∈
ℤ
271
269
270
syl
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
F
y
∈
ℤ
272
266
271
zmulcld
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
A
F
y
∈
ℤ
273
65
ffvelcdmda
⊢
φ
∧
z
∈
T
→
F
z
∈
S
274
273
adantrl
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
F
z
∈
S
275
159
274
sselid
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
F
z
∈
0
..^
N
276
elfzoelz
⊢
F
z
∈
0
..^
N
→
F
z
∈
ℤ
277
275
276
syl
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
F
z
∈
ℤ
278
266
277
zmulcld
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
A
F
z
∈
ℤ
279
moddvds
⊢
N
∈
ℕ
∧
A
F
y
∈
ℤ
∧
A
F
z
∈
ℤ
→
A
F
y
mod
N
=
A
F
z
mod
N
↔
N
∥
A
F
y
−
A
F
z
280
265
272
278
279
syl3anc
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
A
F
y
mod
N
=
A
F
z
mod
N
↔
N
∥
A
F
y
−
A
F
z
281
fveq2
⊢
x
=
y
→
F
x
=
F
y
282
281
oveq2d
⊢
x
=
y
→
A
F
x
=
A
F
y
283
282
oveq1d
⊢
x
=
y
→
A
F
x
mod
N
=
A
F
y
mod
N
284
ovex
⊢
A
F
y
mod
N
∈
V
285
283
5
284
fvmpt
⊢
y
∈
T
→
G
y
=
A
F
y
mod
N
286
fveq2
⊢
x
=
z
→
F
x
=
F
z
287
286
oveq2d
⊢
x
=
z
→
A
F
x
=
A
F
z
288
287
oveq1d
⊢
x
=
z
→
A
F
x
mod
N
=
A
F
z
mod
N
289
ovex
⊢
A
F
z
mod
N
∈
V
290
288
5
289
fvmpt
⊢
z
∈
T
→
G
z
=
A
F
z
mod
N
291
285
290
eqeqan12d
⊢
y
∈
T
∧
z
∈
T
→
G
y
=
G
z
↔
A
F
y
mod
N
=
A
F
z
mod
N
292
291
adantl
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
G
y
=
G
z
↔
A
F
y
mod
N
=
A
F
z
mod
N
293
93
adantr
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
A
∈
ℂ
294
271
zcnd
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
F
y
∈
ℂ
295
277
zcnd
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
F
z
∈
ℂ
296
293
294
295
subdid
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
A
F
y
−
F
z
=
A
F
y
−
A
F
z
297
296
breq2d
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
N
∥
A
F
y
−
F
z
↔
N
∥
A
F
y
−
A
F
z
298
280
292
297
3bitr4d
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
G
y
=
G
z
↔
N
∥
A
F
y
−
F
z
299
102
63
gcdcomd
⊢
φ
→
N
gcd
A
=
A
gcd
N
300
1
simp3d
⊢
φ
→
A
gcd
N
=
1
301
299
300
eqtrd
⊢
φ
→
N
gcd
A
=
1
302
301
adantr
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
N
gcd
A
=
1
303
102
adantr
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
N
∈
ℤ
304
271
277
zsubcld
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
F
y
−
F
z
∈
ℤ
305
coprmdvds
⊢
N
∈
ℤ
∧
A
∈
ℤ
∧
F
y
−
F
z
∈
ℤ
→
N
∥
A
F
y
−
F
z
∧
N
gcd
A
=
1
→
N
∥
F
y
−
F
z
306
303
266
304
305
syl3anc
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
N
∥
A
F
y
−
F
z
∧
N
gcd
A
=
1
→
N
∥
F
y
−
F
z
307
271
zred
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
F
y
∈
ℝ
308
81
adantr
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
N
∈
ℝ
+
309
elfzole1
⊢
F
y
∈
0
..^
N
→
0
≤
F
y
310
269
309
syl
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
0
≤
F
y
311
elfzolt2
⊢
F
y
∈
0
..^
N
→
F
y
<
N
312
269
311
syl
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
F
y
<
N
313
modid
⊢
F
y
∈
ℝ
∧
N
∈
ℝ
+
∧
0
≤
F
y
∧
F
y
<
N
→
F
y
mod
N
=
F
y
314
307
308
310
312
313
syl22anc
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
F
y
mod
N
=
F
y
315
277
zred
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
F
z
∈
ℝ
316
elfzole1
⊢
F
z
∈
0
..^
N
→
0
≤
F
z
317
275
316
syl
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
0
≤
F
z
318
elfzolt2
⊢
F
z
∈
0
..^
N
→
F
z
<
N
319
275
318
syl
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
F
z
<
N
320
modid
⊢
F
z
∈
ℝ
∧
N
∈
ℝ
+
∧
0
≤
F
z
∧
F
z
<
N
→
F
z
mod
N
=
F
z
321
315
308
317
319
320
syl22anc
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
F
z
mod
N
=
F
z
322
314
321
eqeq12d
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
F
y
mod
N
=
F
z
mod
N
↔
F
y
=
F
z
323
moddvds
⊢
N
∈
ℕ
∧
F
y
∈
ℤ
∧
F
z
∈
ℤ
→
F
y
mod
N
=
F
z
mod
N
↔
N
∥
F
y
−
F
z
324
265
271
277
323
syl3anc
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
F
y
mod
N
=
F
z
mod
N
↔
N
∥
F
y
−
F
z
325
f1of1
⊢
F
:
T
⟶
1-1 onto
S
→
F
:
T
⟶
1-1
S
326
4
325
syl
⊢
φ
→
F
:
T
⟶
1-1
S
327
f1fveq
⊢
F
:
T
⟶
1-1
S
∧
y
∈
T
∧
z
∈
T
→
F
y
=
F
z
↔
y
=
z
328
326
327
sylan
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
F
y
=
F
z
↔
y
=
z
329
322
324
328
3bitr3d
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
N
∥
F
y
−
F
z
↔
y
=
z
330
306
329
sylibd
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
N
∥
A
F
y
−
F
z
∧
N
gcd
A
=
1
→
y
=
z
331
302
330
mpan2d
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
N
∥
A
F
y
−
F
z
→
y
=
z
332
298
331
sylbid
⊢
φ
∧
y
∈
T
∧
z
∈
T
→
G
y
=
G
z
→
y
=
z
333
332
ralrimivva
⊢
φ
→
∀
y
∈
T
∀
z
∈
T
G
y
=
G
z
→
y
=
z
334
dff13
⊢
G
:
T
⟶
1-1
S
↔
G
:
T
⟶
S
∧
∀
y
∈
T
∀
z
∈
T
G
y
=
G
z
→
y
=
z
335
160
333
334
sylanbrc
⊢
φ
→
G
:
T
⟶
1-1
S
336
3
ovexi
⊢
T
∈
V
337
336
f1oen
⊢
F
:
T
⟶
1-1 onto
S
→
T
≈
S
338
4
337
syl
⊢
φ
→
T
≈
S
339
fzofi
⊢
0
..^
N
∈
Fin
340
ssfi
⊢
0
..^
N
∈
Fin
∧
S
⊆
0
..^
N
→
S
∈
Fin
341
339
159
340
mp2an
⊢
S
∈
Fin
342
f1finf1o
⊢
T
≈
S
∧
S
∈
Fin
→
G
:
T
⟶
1-1
S
↔
G
:
T
⟶
1-1 onto
S
343
338
341
342
sylancl
⊢
φ
→
G
:
T
⟶
1-1
S
↔
G
:
T
⟶
1-1 onto
S
344
335
343
mpbid
⊢
φ
→
G
:
T
⟶
1-1 onto
S
345
f1oco
⊢
F
-1
:
S
⟶
1-1 onto
T
∧
G
:
T
⟶
1-1 onto
S
→
F
-1
∘
G
:
T
⟶
1-1 onto
T
346
264
344
345
syl2anc
⊢
φ
→
F
-1
∘
G
:
T
⟶
1-1 onto
T
347
f1oeq23
ϕ
ϕ
ϕ
ϕ
⊢
T
=
1
…
ϕ
N
∧
T
=
1
…
ϕ
N
→
F
-1
∘
G
:
T
⟶
1-1 onto
T
↔
F
-1
∘
G
:
1
…
ϕ
N
⟶
1-1 onto
1
…
ϕ
N
348
3
3
347
mp2an
ϕ
ϕ
⊢
F
-1
∘
G
:
T
⟶
1-1 onto
T
↔
F
-1
∘
G
:
1
…
ϕ
N
⟶
1-1 onto
1
…
ϕ
N
349
346
348
sylib
ϕ
ϕ
⊢
φ
→
F
-1
∘
G
:
1
…
ϕ
N
⟶
1-1 onto
1
…
ϕ
N
350
252
zcnd
ϕ
⊢
φ
∧
x
∈
1
…
ϕ
N
→
F
x
∈
ℂ
351
3
eleq2i
ϕ
⊢
w
∈
T
↔
w
∈
1
…
ϕ
N
352
fvco3
⊢
G
:
T
⟶
S
∧
w
∈
T
→
F
-1
∘
G
w
=
F
-1
G
w
353
160
352
sylan
⊢
φ
∧
w
∈
T
→
F
-1
∘
G
w
=
F
-1
G
w
354
353
fveq2d
⊢
φ
∧
w
∈
T
→
F
F
-1
∘
G
w
=
F
F
-1
G
w
355
4
adantr
⊢
φ
∧
w
∈
T
→
F
:
T
⟶
1-1 onto
S
356
160
ffvelcdmda
⊢
φ
∧
w
∈
T
→
G
w
∈
S
357
f1ocnvfv2
⊢
F
:
T
⟶
1-1 onto
S
∧
G
w
∈
S
→
F
F
-1
G
w
=
G
w
358
355
356
357
syl2anc
⊢
φ
∧
w
∈
T
→
F
F
-1
G
w
=
G
w
359
354
358
eqtr2d
⊢
φ
∧
w
∈
T
→
G
w
=
F
F
-1
∘
G
w
360
351
359
sylan2br
ϕ
⊢
φ
∧
w
∈
1
…
ϕ
N
→
G
w
=
F
F
-1
∘
G
w
361
257
259
261
67
262
349
350
360
seqf1o
ϕ
ϕ
⊢
φ
→
seq
1
×
G
ϕ
N
=
seq
1
×
F
ϕ
N
362
361
254
eqeltrd
ϕ
⊢
φ
→
seq
1
×
G
ϕ
N
∈
ℤ
363
moddvds
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
⊢
N
∈
ℕ
∧
A
ϕ
N
seq
1
×
F
ϕ
N
∈
ℤ
∧
seq
1
×
G
ϕ
N
∈
ℤ
→
A
ϕ
N
seq
1
×
F
ϕ
N
mod
N
=
seq
1
×
G
ϕ
N
mod
N
↔
N
∥
A
ϕ
N
seq
1
×
F
ϕ
N
−
seq
1
×
G
ϕ
N
364
6
255
362
363
syl3anc
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
⊢
φ
→
A
ϕ
N
seq
1
×
F
ϕ
N
mod
N
=
seq
1
×
G
ϕ
N
mod
N
↔
N
∥
A
ϕ
N
seq
1
×
F
ϕ
N
−
seq
1
×
G
ϕ
N
365
247
364
mpbid
ϕ
ϕ
ϕ
⊢
φ
→
N
∥
A
ϕ
N
seq
1
×
F
ϕ
N
−
seq
1
×
G
ϕ
N
366
254
zcnd
ϕ
⊢
φ
→
seq
1
×
F
ϕ
N
∈
ℂ
367
366
mullidd
ϕ
ϕ
⊢
φ
→
1
seq
1
×
F
ϕ
N
=
seq
1
×
F
ϕ
N
368
361
367
eqtr4d
ϕ
ϕ
⊢
φ
→
seq
1
×
G
ϕ
N
=
1
seq
1
×
F
ϕ
N
369
368
oveq2d
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
⊢
φ
→
A
ϕ
N
seq
1
×
F
ϕ
N
−
seq
1
×
G
ϕ
N
=
A
ϕ
N
seq
1
×
F
ϕ
N
−
1
seq
1
×
F
ϕ
N
370
250
zcnd
ϕ
⊢
φ
→
A
ϕ
N
∈
ℂ
371
ax-1cn
⊢
1
∈
ℂ
372
subdir
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
⊢
A
ϕ
N
∈
ℂ
∧
1
∈
ℂ
∧
seq
1
×
F
ϕ
N
∈
ℂ
→
A
ϕ
N
−
1
seq
1
×
F
ϕ
N
=
A
ϕ
N
seq
1
×
F
ϕ
N
−
1
seq
1
×
F
ϕ
N
373
371
372
mp3an2
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
⊢
A
ϕ
N
∈
ℂ
∧
seq
1
×
F
ϕ
N
∈
ℂ
→
A
ϕ
N
−
1
seq
1
×
F
ϕ
N
=
A
ϕ
N
seq
1
×
F
ϕ
N
−
1
seq
1
×
F
ϕ
N
374
370
366
373
syl2anc
ϕ
ϕ
ϕ
ϕ
ϕ
⊢
φ
→
A
ϕ
N
−
1
seq
1
×
F
ϕ
N
=
A
ϕ
N
seq
1
×
F
ϕ
N
−
1
seq
1
×
F
ϕ
N
375
zsubcl
ϕ
ϕ
⊢
A
ϕ
N
∈
ℤ
∧
1
∈
ℤ
→
A
ϕ
N
−
1
∈
ℤ
376
250
84
375
sylancl
ϕ
⊢
φ
→
A
ϕ
N
−
1
∈
ℤ
377
376
zcnd
ϕ
⊢
φ
→
A
ϕ
N
−
1
∈
ℂ
378
377
366
mulcomd
ϕ
ϕ
ϕ
ϕ
⊢
φ
→
A
ϕ
N
−
1
seq
1
×
F
ϕ
N
=
seq
1
×
F
ϕ
N
A
ϕ
N
−
1
379
369
374
378
3eqtr2d
ϕ
ϕ
ϕ
ϕ
ϕ
⊢
φ
→
A
ϕ
N
seq
1
×
F
ϕ
N
−
seq
1
×
G
ϕ
N
=
seq
1
×
F
ϕ
N
A
ϕ
N
−
1
380
365
379
breqtrd
ϕ
ϕ
⊢
φ
→
N
∥
seq
1
×
F
ϕ
N
A
ϕ
N
−
1
381
246
simprd
ϕ
⊢
φ
→
N
gcd
seq
1
×
F
ϕ
N
=
1
382
coprmdvds
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
⊢
N
∈
ℤ
∧
seq
1
×
F
ϕ
N
∈
ℤ
∧
A
ϕ
N
−
1
∈
ℤ
→
N
∥
seq
1
×
F
ϕ
N
A
ϕ
N
−
1
∧
N
gcd
seq
1
×
F
ϕ
N
=
1
→
N
∥
A
ϕ
N
−
1
383
102
254
376
382
syl3anc
ϕ
ϕ
ϕ
ϕ
⊢
φ
→
N
∥
seq
1
×
F
ϕ
N
A
ϕ
N
−
1
∧
N
gcd
seq
1
×
F
ϕ
N
=
1
→
N
∥
A
ϕ
N
−
1
384
380
381
383
mp2and
ϕ
⊢
φ
→
N
∥
A
ϕ
N
−
1
385
moddvds
ϕ
ϕ
ϕ
⊢
N
∈
ℕ
∧
A
ϕ
N
∈
ℤ
∧
1
∈
ℤ
→
A
ϕ
N
mod
N
=
1
mod
N
↔
N
∥
A
ϕ
N
−
1
386
84
385
mp3an3
ϕ
ϕ
ϕ
⊢
N
∈
ℕ
∧
A
ϕ
N
∈
ℤ
→
A
ϕ
N
mod
N
=
1
mod
N
↔
N
∥
A
ϕ
N
−
1
387
6
250
386
syl2anc
ϕ
ϕ
⊢
φ
→
A
ϕ
N
mod
N
=
1
mod
N
↔
N
∥
A
ϕ
N
−
1
388
384
387
mpbird
ϕ
⊢
φ
→
A
ϕ
N
mod
N
=
1
mod
N