| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eulerth.1 |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) ) |
| 2 |
|
eulerth.2 |
⊢ 𝑆 = { 𝑦 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑦 gcd 𝑁 ) = 1 } |
| 3 |
|
eulerth.3 |
⊢ 𝑇 = ( 1 ... ( ϕ ‘ 𝑁 ) ) |
| 4 |
|
eulerth.4 |
⊢ ( 𝜑 → 𝐹 : 𝑇 –1-1-onto→ 𝑆 ) |
| 5 |
|
eulerth.5 |
⊢ 𝐺 = ( 𝑥 ∈ 𝑇 ↦ ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) ) |
| 6 |
1
|
simp1d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 7 |
6
|
phicld |
⊢ ( 𝜑 → ( ϕ ‘ 𝑁 ) ∈ ℕ ) |
| 8 |
7
|
nnred |
⊢ ( 𝜑 → ( ϕ ‘ 𝑁 ) ∈ ℝ ) |
| 9 |
8
|
leidd |
⊢ ( 𝜑 → ( ϕ ‘ 𝑁 ) ≤ ( ϕ ‘ 𝑁 ) ) |
| 10 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( ϕ ‘ 𝑁 ) ≤ ( ϕ ‘ 𝑁 ) ) → ( ϕ ‘ 𝑁 ) ∈ ℕ ) |
| 11 |
|
breq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 ≤ ( ϕ ‘ 𝑁 ) ↔ 1 ≤ ( ϕ ‘ 𝑁 ) ) ) |
| 12 |
11
|
anbi2d |
⊢ ( 𝑥 = 1 → ( ( 𝜑 ∧ 𝑥 ≤ ( ϕ ‘ 𝑁 ) ) ↔ ( 𝜑 ∧ 1 ≤ ( ϕ ‘ 𝑁 ) ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 1 ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑥 = 1 → ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) |
| 15 |
13 14
|
oveq12d |
⊢ ( 𝑥 = 1 → ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( ( 𝐴 ↑ 1 ) · ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) |
| 16 |
15
|
oveq1d |
⊢ ( 𝑥 = 1 → ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( ( 𝐴 ↑ 1 ) · ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) mod 𝑁 ) ) |
| 17 |
|
fveq2 |
⊢ ( 𝑥 = 1 → ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐺 ) ‘ 1 ) ) |
| 18 |
17
|
oveq1d |
⊢ ( 𝑥 = 1 → ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 1 ) mod 𝑁 ) ) |
| 19 |
16 18
|
eqeq12d |
⊢ ( 𝑥 = 1 → ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ↔ ( ( ( 𝐴 ↑ 1 ) · ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 1 ) mod 𝑁 ) ) ) |
| 20 |
14
|
oveq2d |
⊢ ( 𝑥 = 1 → ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) |
| 21 |
20
|
eqeq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ↔ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = 1 ) ) |
| 22 |
19 21
|
anbi12d |
⊢ ( 𝑥 = 1 → ( ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ) ↔ ( ( ( ( 𝐴 ↑ 1 ) · ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 1 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = 1 ) ) ) |
| 23 |
12 22
|
imbi12d |
⊢ ( 𝑥 = 1 → ( ( ( 𝜑 ∧ 𝑥 ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ) ) ↔ ( ( 𝜑 ∧ 1 ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 1 ) · ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 1 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = 1 ) ) ) ) |
| 24 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≤ ( ϕ ‘ 𝑁 ) ↔ 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) ) |
| 25 |
24
|
anbi2d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝜑 ∧ 𝑥 ≤ ( ϕ ‘ 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) ) ) |
| 26 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑧 ) ) |
| 27 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) |
| 28 |
26 27
|
oveq12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) ) |
| 29 |
28
|
oveq1d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) ) |
| 30 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ) |
| 31 |
30
|
oveq1d |
⊢ ( 𝑥 = 𝑧 → ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ) |
| 32 |
29 31
|
eqeq12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ↔ ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ) ) |
| 33 |
27
|
oveq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) ) |
| 34 |
33
|
eqeq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ↔ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ) ) |
| 35 |
32 34
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ) ↔ ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ) ) ) |
| 36 |
25 35
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝜑 ∧ 𝑥 ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ) ) ↔ ( ( 𝜑 ∧ 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ) ) ) ) |
| 37 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( 𝑥 ≤ ( ϕ ‘ 𝑁 ) ↔ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) |
| 38 |
37
|
anbi2d |
⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( ( 𝜑 ∧ 𝑥 ≤ ( ϕ ‘ 𝑁 ) ) ↔ ( 𝜑 ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) ) |
| 39 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ ( 𝑧 + 1 ) ) ) |
| 40 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) |
| 41 |
39 40
|
oveq12d |
⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) ) |
| 42 |
41
|
oveq1d |
⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ) |
| 43 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) ) |
| 44 |
43
|
oveq1d |
⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ) |
| 45 |
42 44
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ↔ ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ) ) |
| 46 |
40
|
oveq2d |
⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) ) |
| 47 |
46
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ↔ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = 1 ) ) |
| 48 |
45 47
|
anbi12d |
⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ) ↔ ( ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = 1 ) ) ) |
| 49 |
38 48
|
imbi12d |
⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( ( ( 𝜑 ∧ 𝑥 ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ) ) ↔ ( ( 𝜑 ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = 1 ) ) ) ) |
| 50 |
|
breq1 |
⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( 𝑥 ≤ ( ϕ ‘ 𝑁 ) ↔ ( ϕ ‘ 𝑁 ) ≤ ( ϕ ‘ 𝑁 ) ) ) |
| 51 |
50
|
anbi2d |
⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( ( 𝜑 ∧ 𝑥 ≤ ( ϕ ‘ 𝑁 ) ) ↔ ( 𝜑 ∧ ( ϕ ‘ 𝑁 ) ≤ ( ϕ ‘ 𝑁 ) ) ) ) |
| 52 |
|
oveq2 |
⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ) |
| 53 |
|
fveq2 |
⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) |
| 54 |
52 53
|
oveq12d |
⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) |
| 55 |
54
|
oveq1d |
⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) mod 𝑁 ) ) |
| 56 |
|
fveq2 |
⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) ) |
| 57 |
56
|
oveq1d |
⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) ) |
| 58 |
55 57
|
eqeq12d |
⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ↔ ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) ) ) |
| 59 |
53
|
oveq2d |
⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) |
| 60 |
59
|
eqeq1d |
⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ↔ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = 1 ) ) |
| 61 |
58 60
|
anbi12d |
⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ) ↔ ( ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = 1 ) ) ) |
| 62 |
51 61
|
imbi12d |
⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( ( ( 𝜑 ∧ 𝑥 ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ) ) ↔ ( ( 𝜑 ∧ ( ϕ ‘ 𝑁 ) ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = 1 ) ) ) ) |
| 63 |
1
|
simp2d |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 64 |
|
f1of |
⊢ ( 𝐹 : 𝑇 –1-1-onto→ 𝑆 → 𝐹 : 𝑇 ⟶ 𝑆 ) |
| 65 |
4 64
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑇 ⟶ 𝑆 ) |
| 66 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 67 |
7 66
|
eleqtrdi |
⊢ ( 𝜑 → ( ϕ ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 68 |
|
eluzfz1 |
⊢ ( ( ϕ ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) |
| 69 |
67 68
|
syl |
⊢ ( 𝜑 → 1 ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) |
| 70 |
69 3
|
eleqtrrdi |
⊢ ( 𝜑 → 1 ∈ 𝑇 ) |
| 71 |
65 70
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ 𝑆 ) |
| 72 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝐹 ‘ 1 ) → ( 𝑦 gcd 𝑁 ) = ( ( 𝐹 ‘ 1 ) gcd 𝑁 ) ) |
| 73 |
72
|
eqeq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ 1 ) → ( ( 𝑦 gcd 𝑁 ) = 1 ↔ ( ( 𝐹 ‘ 1 ) gcd 𝑁 ) = 1 ) ) |
| 74 |
73 2
|
elrab2 |
⊢ ( ( 𝐹 ‘ 1 ) ∈ 𝑆 ↔ ( ( 𝐹 ‘ 1 ) ∈ ( 0 ..^ 𝑁 ) ∧ ( ( 𝐹 ‘ 1 ) gcd 𝑁 ) = 1 ) ) |
| 75 |
71 74
|
sylib |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 1 ) ∈ ( 0 ..^ 𝑁 ) ∧ ( ( 𝐹 ‘ 1 ) gcd 𝑁 ) = 1 ) ) |
| 76 |
75
|
simpld |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 77 |
|
elfzoelz |
⊢ ( ( 𝐹 ‘ 1 ) ∈ ( 0 ..^ 𝑁 ) → ( 𝐹 ‘ 1 ) ∈ ℤ ) |
| 78 |
76 77
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ ℤ ) |
| 79 |
63 78
|
zmulcld |
⊢ ( 𝜑 → ( 𝐴 · ( 𝐹 ‘ 1 ) ) ∈ ℤ ) |
| 80 |
79
|
zred |
⊢ ( 𝜑 → ( 𝐴 · ( 𝐹 ‘ 1 ) ) ∈ ℝ ) |
| 81 |
6
|
nnrpd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ+ ) |
| 82 |
|
modabs2 |
⊢ ( ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) mod 𝑁 ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) mod 𝑁 ) ) |
| 83 |
80 81 82
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) mod 𝑁 ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) mod 𝑁 ) ) |
| 84 |
|
1z |
⊢ 1 ∈ ℤ |
| 85 |
|
fveq2 |
⊢ ( 𝑥 = 1 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 1 ) ) |
| 86 |
85
|
oveq2d |
⊢ ( 𝑥 = 1 → ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) = ( 𝐴 · ( 𝐹 ‘ 1 ) ) ) |
| 87 |
86
|
oveq1d |
⊢ ( 𝑥 = 1 → ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) mod 𝑁 ) ) |
| 88 |
|
ovex |
⊢ ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) mod 𝑁 ) ∈ V |
| 89 |
87 5 88
|
fvmpt |
⊢ ( 1 ∈ 𝑇 → ( 𝐺 ‘ 1 ) = ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) mod 𝑁 ) ) |
| 90 |
70 89
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) = ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) mod 𝑁 ) ) |
| 91 |
84 90
|
seq1i |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐺 ) ‘ 1 ) = ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) mod 𝑁 ) ) |
| 92 |
91
|
oveq1d |
⊢ ( 𝜑 → ( ( seq 1 ( · , 𝐺 ) ‘ 1 ) mod 𝑁 ) = ( ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) mod 𝑁 ) mod 𝑁 ) ) |
| 93 |
63
|
zcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 94 |
93
|
exp1d |
⊢ ( 𝜑 → ( 𝐴 ↑ 1 ) = 𝐴 ) |
| 95 |
|
seq1 |
⊢ ( 1 ∈ ℤ → ( seq 1 ( · , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
| 96 |
84 95
|
ax-mp |
⊢ ( seq 1 ( · , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) |
| 97 |
96
|
a1i |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
| 98 |
94 97
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 1 ) · ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = ( 𝐴 · ( 𝐹 ‘ 1 ) ) ) |
| 99 |
98
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 1 ) · ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) mod 𝑁 ) ) |
| 100 |
83 92 99
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 1 ) · ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 1 ) mod 𝑁 ) ) |
| 101 |
96
|
oveq2i |
⊢ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = ( 𝑁 gcd ( 𝐹 ‘ 1 ) ) |
| 102 |
6
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 103 |
102 78
|
gcdcomd |
⊢ ( 𝜑 → ( 𝑁 gcd ( 𝐹 ‘ 1 ) ) = ( ( 𝐹 ‘ 1 ) gcd 𝑁 ) ) |
| 104 |
75
|
simprd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 1 ) gcd 𝑁 ) = 1 ) |
| 105 |
103 104
|
eqtrd |
⊢ ( 𝜑 → ( 𝑁 gcd ( 𝐹 ‘ 1 ) ) = 1 ) |
| 106 |
101 105
|
eqtrid |
⊢ ( 𝜑 → ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = 1 ) |
| 107 |
100 106
|
jca |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 1 ) · ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 1 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = 1 ) ) |
| 108 |
107
|
adantr |
⊢ ( ( 𝜑 ∧ 1 ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 1 ) · ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 1 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = 1 ) ) |
| 109 |
|
nnre |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℝ ) |
| 110 |
109
|
adantr |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝜑 ) → 𝑧 ∈ ℝ ) |
| 111 |
110
|
lep1d |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝜑 ) → 𝑧 ≤ ( 𝑧 + 1 ) ) |
| 112 |
|
peano2re |
⊢ ( 𝑧 ∈ ℝ → ( 𝑧 + 1 ) ∈ ℝ ) |
| 113 |
110 112
|
syl |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝜑 ) → ( 𝑧 + 1 ) ∈ ℝ ) |
| 114 |
8
|
adantl |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝜑 ) → ( ϕ ‘ 𝑁 ) ∈ ℝ ) |
| 115 |
|
letr |
⊢ ( ( 𝑧 ∈ ℝ ∧ ( 𝑧 + 1 ) ∈ ℝ ∧ ( ϕ ‘ 𝑁 ) ∈ ℝ ) → ( ( 𝑧 ≤ ( 𝑧 + 1 ) ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) → 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) ) |
| 116 |
110 113 114 115
|
syl3anc |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝜑 ) → ( ( 𝑧 ≤ ( 𝑧 + 1 ) ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) → 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) ) |
| 117 |
111 116
|
mpand |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝜑 ) → ( ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) → 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) ) |
| 118 |
117
|
imdistanda |
⊢ ( 𝑧 ∈ ℕ → ( ( 𝜑 ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) → ( 𝜑 ∧ 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) ) ) |
| 119 |
118
|
imim1d |
⊢ ( 𝑧 ∈ ℕ → ( ( ( 𝜑 ∧ 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ) ) → ( ( 𝜑 ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ) ) ) ) |
| 120 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝐴 ∈ ℤ ) |
| 121 |
|
nnnn0 |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℕ0 ) |
| 122 |
121
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝑧 ∈ ℕ0 ) |
| 123 |
|
zexpcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑧 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑧 ) ∈ ℤ ) |
| 124 |
120 122 123
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝐴 ↑ 𝑧 ) ∈ ℤ ) |
| 125 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝑧 ∈ ℕ ) |
| 126 |
125 66
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝑧 ∈ ( ℤ≥ ‘ 1 ) ) |
| 127 |
109
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝑧 ∈ ℝ ) |
| 128 |
127 112
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝑧 + 1 ) ∈ ℝ ) |
| 129 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ϕ ‘ 𝑁 ) ∈ ℝ ) |
| 130 |
127
|
lep1d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝑧 ≤ ( 𝑧 + 1 ) ) |
| 131 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) |
| 132 |
127 128 129 130 131
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) |
| 133 |
|
nnz |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℤ ) |
| 134 |
133
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝑧 ∈ ℤ ) |
| 135 |
7
|
nnzd |
⊢ ( 𝜑 → ( ϕ ‘ 𝑁 ) ∈ ℤ ) |
| 136 |
135
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ϕ ‘ 𝑁 ) ∈ ℤ ) |
| 137 |
|
eluz |
⊢ ( ( 𝑧 ∈ ℤ ∧ ( ϕ ‘ 𝑁 ) ∈ ℤ ) → ( ( ϕ ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑧 ) ↔ 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) ) |
| 138 |
134 136 137
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ϕ ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑧 ) ↔ 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) ) |
| 139 |
132 138
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ϕ ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑧 ) ) |
| 140 |
|
fzss2 |
⊢ ( ( ϕ ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑧 ) → ( 1 ... 𝑧 ) ⊆ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) |
| 141 |
139 140
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 1 ... 𝑧 ) ⊆ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) |
| 142 |
141 3
|
sseqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 1 ... 𝑧 ) ⊆ 𝑇 ) |
| 143 |
142
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) ∧ 𝑥 ∈ ( 1 ... 𝑧 ) ) → 𝑥 ∈ 𝑇 ) |
| 144 |
65
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 145 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝑦 gcd 𝑁 ) = ( ( 𝐹 ‘ 𝑥 ) gcd 𝑁 ) ) |
| 146 |
145
|
eqeq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝑦 gcd 𝑁 ) = 1 ↔ ( ( 𝐹 ‘ 𝑥 ) gcd 𝑁 ) = 1 ) ) |
| 147 |
146 2
|
elrab2 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 ..^ 𝑁 ) ∧ ( ( 𝐹 ‘ 𝑥 ) gcd 𝑁 ) = 1 ) ) |
| 148 |
144 147
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 ..^ 𝑁 ) ∧ ( ( 𝐹 ‘ 𝑥 ) gcd 𝑁 ) = 1 ) ) |
| 149 |
148
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 150 |
|
elfzoelz |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 ..^ 𝑁 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℤ ) |
| 151 |
149 150
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℤ ) |
| 152 |
151
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) ∧ 𝑥 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℤ ) |
| 153 |
143 152
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) ∧ 𝑥 ∈ ( 1 ... 𝑧 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℤ ) |
| 154 |
|
zmulcl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 · 𝑦 ) ∈ ℤ ) |
| 155 |
154
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑥 · 𝑦 ) ∈ ℤ ) |
| 156 |
126 153 155
|
seqcl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ∈ ℤ ) |
| 157 |
124 156
|
zmulcld |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) ∈ ℤ ) |
| 158 |
157
|
zred |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) ∈ ℝ ) |
| 159 |
2
|
ssrab3 |
⊢ 𝑆 ⊆ ( 0 ..^ 𝑁 ) |
| 160 |
1 2 3 4 5
|
eulerthlem1 |
⊢ ( 𝜑 → 𝐺 : 𝑇 ⟶ 𝑆 ) |
| 161 |
160
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑆 ) |
| 162 |
159 161
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 163 |
|
elfzoelz |
⊢ ( ( 𝐺 ‘ 𝑥 ) ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℤ ) |
| 164 |
162 163
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℤ ) |
| 165 |
164
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) ∧ 𝑥 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℤ ) |
| 166 |
143 165
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) ∧ 𝑥 ∈ ( 1 ... 𝑧 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℤ ) |
| 167 |
126 166 155
|
seqcl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ∈ ℤ ) |
| 168 |
167
|
zred |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ∈ ℝ ) |
| 169 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝐹 : 𝑇 ⟶ 𝑆 ) |
| 170 |
|
peano2nn |
⊢ ( 𝑧 ∈ ℕ → ( 𝑧 + 1 ) ∈ ℕ ) |
| 171 |
170
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝑧 + 1 ) ∈ ℕ ) |
| 172 |
171
|
nnge1d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 1 ≤ ( 𝑧 + 1 ) ) |
| 173 |
171
|
nnzd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝑧 + 1 ) ∈ ℤ ) |
| 174 |
|
elfz |
⊢ ( ( ( 𝑧 + 1 ) ∈ ℤ ∧ 1 ∈ ℤ ∧ ( ϕ ‘ 𝑁 ) ∈ ℤ ) → ( ( 𝑧 + 1 ) ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ↔ ( 1 ≤ ( 𝑧 + 1 ) ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) ) |
| 175 |
84 174
|
mp3an2 |
⊢ ( ( ( 𝑧 + 1 ) ∈ ℤ ∧ ( ϕ ‘ 𝑁 ) ∈ ℤ ) → ( ( 𝑧 + 1 ) ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ↔ ( 1 ≤ ( 𝑧 + 1 ) ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) ) |
| 176 |
173 136 175
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( 𝑧 + 1 ) ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ↔ ( 1 ≤ ( 𝑧 + 1 ) ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) ) |
| 177 |
172 131 176
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝑧 + 1 ) ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) |
| 178 |
177 3
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝑧 + 1 ) ∈ 𝑇 ) |
| 179 |
169 178
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑧 + 1 ) ) ∈ 𝑆 ) |
| 180 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑧 + 1 ) ) → ( 𝑦 gcd 𝑁 ) = ( ( 𝐹 ‘ ( 𝑧 + 1 ) ) gcd 𝑁 ) ) |
| 181 |
180
|
eqeq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑧 + 1 ) ) → ( ( 𝑦 gcd 𝑁 ) = 1 ↔ ( ( 𝐹 ‘ ( 𝑧 + 1 ) ) gcd 𝑁 ) = 1 ) ) |
| 182 |
181 2
|
elrab2 |
⊢ ( ( 𝐹 ‘ ( 𝑧 + 1 ) ) ∈ 𝑆 ↔ ( ( 𝐹 ‘ ( 𝑧 + 1 ) ) ∈ ( 0 ..^ 𝑁 ) ∧ ( ( 𝐹 ‘ ( 𝑧 + 1 ) ) gcd 𝑁 ) = 1 ) ) |
| 183 |
179 182
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( 𝐹 ‘ ( 𝑧 + 1 ) ) ∈ ( 0 ..^ 𝑁 ) ∧ ( ( 𝐹 ‘ ( 𝑧 + 1 ) ) gcd 𝑁 ) = 1 ) ) |
| 184 |
183
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑧 + 1 ) ) ∈ ( 0 ..^ 𝑁 ) ) |
| 185 |
|
elfzoelz |
⊢ ( ( 𝐹 ‘ ( 𝑧 + 1 ) ) ∈ ( 0 ..^ 𝑁 ) → ( 𝐹 ‘ ( 𝑧 + 1 ) ) ∈ ℤ ) |
| 186 |
184 185
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑧 + 1 ) ) ∈ ℤ ) |
| 187 |
120 186
|
zmulcld |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ∈ ℤ ) |
| 188 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝑁 ∈ ℝ+ ) |
| 189 |
|
modmul1 |
⊢ ( ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) ∈ ℝ ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ∈ ℝ ) ∧ ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ∈ ℤ ∧ 𝑁 ∈ ℝ+ ) ∧ ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) mod 𝑁 ) = ( ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) mod 𝑁 ) ) |
| 190 |
189
|
3expia |
⊢ ( ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) ∈ ℝ ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ∈ ℝ ) ∧ ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ∈ ℤ ∧ 𝑁 ∈ ℝ+ ) ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) mod 𝑁 ) = ( ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) mod 𝑁 ) ) ) |
| 191 |
158 168 187 188 190
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) mod 𝑁 ) = ( ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) mod 𝑁 ) ) ) |
| 192 |
124
|
zcnd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝐴 ↑ 𝑧 ) ∈ ℂ ) |
| 193 |
156
|
zcnd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ∈ ℂ ) |
| 194 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝐴 ∈ ℂ ) |
| 195 |
186
|
zcnd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑧 + 1 ) ) ∈ ℂ ) |
| 196 |
192 193 194 195
|
mul4d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) = ( ( ( 𝐴 ↑ 𝑧 ) · 𝐴 ) · ( ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) ) |
| 197 |
194 122
|
expp1d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝐴 ↑ ( 𝑧 + 1 ) ) = ( ( 𝐴 ↑ 𝑧 ) · 𝐴 ) ) |
| 198 |
|
seqp1 |
⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) |
| 199 |
126 198
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) |
| 200 |
197 199
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = ( ( ( 𝐴 ↑ 𝑧 ) · 𝐴 ) · ( ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) ) |
| 201 |
196 200
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) = ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) ) |
| 202 |
201
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) mod 𝑁 ) = ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ) |
| 203 |
187
|
zred |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ∈ ℝ ) |
| 204 |
203 188
|
modcld |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ∈ ℝ ) |
| 205 |
|
modabs2 |
⊢ ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ) |
| 206 |
203 188 205
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ) |
| 207 |
|
modmul1 |
⊢ ( ( ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ∈ ℝ ∧ ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ∈ ℝ ) ∧ ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ∈ ℤ ∧ 𝑁 ∈ ℝ+ ) ∧ ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ) → ( ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) · ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) · ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ) mod 𝑁 ) ) |
| 208 |
204 203 167 188 206 207
|
syl221anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) · ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) · ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ) mod 𝑁 ) ) |
| 209 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) |
| 210 |
209
|
oveq2d |
⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) = ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) |
| 211 |
210
|
oveq1d |
⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ) |
| 212 |
|
ovex |
⊢ ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ∈ V |
| 213 |
211 5 212
|
fvmpt |
⊢ ( ( 𝑧 + 1 ) ∈ 𝑇 → ( 𝐺 ‘ ( 𝑧 + 1 ) ) = ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ) |
| 214 |
178 213
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝐺 ‘ ( 𝑧 + 1 ) ) = ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ) |
| 215 |
214
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( 𝐺 ‘ ( 𝑧 + 1 ) ) ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ) ) |
| 216 |
|
seqp1 |
⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( 𝐺 ‘ ( 𝑧 + 1 ) ) ) ) |
| 217 |
126 216
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( 𝐺 ‘ ( 𝑧 + 1 ) ) ) ) |
| 218 |
204
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ∈ ℂ ) |
| 219 |
167
|
zcnd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ∈ ℂ ) |
| 220 |
218 219
|
mulcomd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) · ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ) ) |
| 221 |
215 217 220
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) = ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) · ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ) ) |
| 222 |
221
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) = ( ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) · ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ) mod 𝑁 ) ) |
| 223 |
187
|
zcnd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ∈ ℂ ) |
| 224 |
219 223
|
mulcomd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) = ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) · ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ) ) |
| 225 |
224
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) mod 𝑁 ) = ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) · ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ) mod 𝑁 ) ) |
| 226 |
208 222 225
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ) |
| 227 |
202 226
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) mod 𝑁 ) = ( ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) mod 𝑁 ) ↔ ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ) ) |
| 228 |
191 227
|
sylibd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) → ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ) ) |
| 229 |
102
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝑁 ∈ ℤ ) |
| 230 |
229 186
|
gcdcomd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝑁 gcd ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) = ( ( 𝐹 ‘ ( 𝑧 + 1 ) ) gcd 𝑁 ) ) |
| 231 |
183
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( 𝐹 ‘ ( 𝑧 + 1 ) ) gcd 𝑁 ) = 1 ) |
| 232 |
230 231
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝑁 gcd ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) = 1 ) |
| 233 |
|
rpmul |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ∈ ℤ ∧ ( 𝐹 ‘ ( 𝑧 + 1 ) ) ∈ ℤ ) → ( ( ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ∧ ( 𝑁 gcd ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) = 1 ) → ( 𝑁 gcd ( ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) = 1 ) ) |
| 234 |
229 156 186 233
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ∧ ( 𝑁 gcd ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) = 1 ) → ( 𝑁 gcd ( ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) = 1 ) ) |
| 235 |
232 234
|
mpan2d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 → ( 𝑁 gcd ( ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) = 1 ) ) |
| 236 |
199
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = ( 𝑁 gcd ( ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) ) |
| 237 |
236
|
eqeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = 1 ↔ ( 𝑁 gcd ( ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) = 1 ) ) |
| 238 |
235 237
|
sylibrd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 → ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = 1 ) ) |
| 239 |
228 238
|
anim12d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ) → ( ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = 1 ) ) ) |
| 240 |
239
|
an12s |
⊢ ( ( 𝑧 ∈ ℕ ∧ ( 𝜑 ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ) → ( ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = 1 ) ) ) |
| 241 |
240
|
ex |
⊢ ( 𝑧 ∈ ℕ → ( ( 𝜑 ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ) → ( ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = 1 ) ) ) ) |
| 242 |
241
|
a2d |
⊢ ( 𝑧 ∈ ℕ → ( ( ( 𝜑 ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ) ) → ( ( 𝜑 ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = 1 ) ) ) ) |
| 243 |
119 242
|
syld |
⊢ ( 𝑧 ∈ ℕ → ( ( ( 𝜑 ∧ 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ) ) → ( ( 𝜑 ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = 1 ) ) ) ) |
| 244 |
23 36 49 62 108 243
|
nnind |
⊢ ( ( ϕ ‘ 𝑁 ) ∈ ℕ → ( ( 𝜑 ∧ ( ϕ ‘ 𝑁 ) ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = 1 ) ) ) |
| 245 |
10 244
|
mpcom |
⊢ ( ( 𝜑 ∧ ( ϕ ‘ 𝑁 ) ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = 1 ) ) |
| 246 |
9 245
|
mpdan |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = 1 ) ) |
| 247 |
246
|
simpld |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) ) |
| 248 |
7
|
nnnn0d |
⊢ ( 𝜑 → ( ϕ ‘ 𝑁 ) ∈ ℕ0 ) |
| 249 |
|
zexpcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( ϕ ‘ 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ) |
| 250 |
63 248 249
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ) |
| 251 |
3
|
eleq2i |
⊢ ( 𝑥 ∈ 𝑇 ↔ 𝑥 ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) |
| 252 |
251 151
|
sylan2br |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℤ ) |
| 253 |
154
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑥 · 𝑦 ) ∈ ℤ ) |
| 254 |
67 252 253
|
seqcl |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ) |
| 255 |
250 254
|
zmulcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ∈ ℤ ) |
| 256 |
|
mulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
| 257 |
256
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
| 258 |
|
mulcom |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) |
| 259 |
258
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) |
| 260 |
|
mulass |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 261 |
260
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 262 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
| 263 |
|
f1ocnv |
⊢ ( 𝐹 : 𝑇 –1-1-onto→ 𝑆 → ◡ 𝐹 : 𝑆 –1-1-onto→ 𝑇 ) |
| 264 |
4 263
|
syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝑆 –1-1-onto→ 𝑇 ) |
| 265 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 𝑁 ∈ ℕ ) |
| 266 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 𝐴 ∈ ℤ ) |
| 267 |
65
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑆 ) |
| 268 |
267
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑆 ) |
| 269 |
159 268
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 270 |
|
elfzoelz |
⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ( 0 ..^ 𝑁 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℤ ) |
| 271 |
269 270
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℤ ) |
| 272 |
266 271
|
zmulcld |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ∈ ℤ ) |
| 273 |
65
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑆 ) |
| 274 |
273
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑆 ) |
| 275 |
159 274
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 276 |
|
elfzoelz |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 0 ..^ 𝑁 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℤ ) |
| 277 |
275 276
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℤ ) |
| 278 |
266 277
|
zmulcld |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) ∈ ℤ ) |
| 279 |
|
moddvds |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ∈ ℤ ∧ ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) ∈ ℤ ) → ( ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) − ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
| 280 |
265 272 278 279
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) − ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
| 281 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 282 |
281
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) = ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) |
| 283 |
282
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) mod 𝑁 ) ) |
| 284 |
|
ovex |
⊢ ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) mod 𝑁 ) ∈ V |
| 285 |
283 5 284
|
fvmpt |
⊢ ( 𝑦 ∈ 𝑇 → ( 𝐺 ‘ 𝑦 ) = ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) mod 𝑁 ) ) |
| 286 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 287 |
286
|
oveq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) = ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) ) |
| 288 |
287
|
oveq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) mod 𝑁 ) ) |
| 289 |
|
ovex |
⊢ ( ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) mod 𝑁 ) ∈ V |
| 290 |
288 5 289
|
fvmpt |
⊢ ( 𝑧 ∈ 𝑇 → ( 𝐺 ‘ 𝑧 ) = ( ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) mod 𝑁 ) ) |
| 291 |
285 290
|
eqeqan12d |
⊢ ( ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) mod 𝑁 ) ) ) |
| 292 |
291
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) mod 𝑁 ) ) ) |
| 293 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 𝐴 ∈ ℂ ) |
| 294 |
271
|
zcnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 295 |
277
|
zcnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 296 |
293 294 295
|
subdid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐴 · ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) − ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 297 |
296
|
breq2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝑁 ∥ ( 𝐴 · ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ↔ 𝑁 ∥ ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) − ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
| 298 |
280 292 297
|
3bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ↔ 𝑁 ∥ ( 𝐴 · ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
| 299 |
102 63
|
gcdcomd |
⊢ ( 𝜑 → ( 𝑁 gcd 𝐴 ) = ( 𝐴 gcd 𝑁 ) ) |
| 300 |
1
|
simp3d |
⊢ ( 𝜑 → ( 𝐴 gcd 𝑁 ) = 1 ) |
| 301 |
299 300
|
eqtrd |
⊢ ( 𝜑 → ( 𝑁 gcd 𝐴 ) = 1 ) |
| 302 |
301
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝑁 gcd 𝐴 ) = 1 ) |
| 303 |
102
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 𝑁 ∈ ℤ ) |
| 304 |
271 277
|
zsubcld |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ∈ ℤ ) |
| 305 |
|
coprmdvds |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ∈ ℤ ) → ( ( 𝑁 ∥ ( 𝐴 · ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ∧ ( 𝑁 gcd 𝐴 ) = 1 ) → 𝑁 ∥ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 306 |
303 266 304 305
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝑁 ∥ ( 𝐴 · ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ∧ ( 𝑁 gcd 𝐴 ) = 1 ) → 𝑁 ∥ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 307 |
271
|
zred |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 308 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 𝑁 ∈ ℝ+ ) |
| 309 |
|
elfzole1 |
⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ( 0 ..^ 𝑁 ) → 0 ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 310 |
269 309
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 0 ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 311 |
|
elfzolt2 |
⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ( 0 ..^ 𝑁 ) → ( 𝐹 ‘ 𝑦 ) < 𝑁 ) |
| 312 |
269 311
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑦 ) < 𝑁 ) |
| 313 |
|
modid |
⊢ ( ( ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ∧ ( 0 ≤ ( 𝐹 ‘ 𝑦 ) ∧ ( 𝐹 ‘ 𝑦 ) < 𝑁 ) ) → ( ( 𝐹 ‘ 𝑦 ) mod 𝑁 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 314 |
307 308 310 312 313
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝐹 ‘ 𝑦 ) mod 𝑁 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 315 |
277
|
zred |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 316 |
|
elfzole1 |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 0 ..^ 𝑁 ) → 0 ≤ ( 𝐹 ‘ 𝑧 ) ) |
| 317 |
275 316
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 0 ≤ ( 𝐹 ‘ 𝑧 ) ) |
| 318 |
|
elfzolt2 |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 0 ..^ 𝑁 ) → ( 𝐹 ‘ 𝑧 ) < 𝑁 ) |
| 319 |
275 318
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑧 ) < 𝑁 ) |
| 320 |
|
modid |
⊢ ( ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ∧ ( 0 ≤ ( 𝐹 ‘ 𝑧 ) ∧ ( 𝐹 ‘ 𝑧 ) < 𝑁 ) ) → ( ( 𝐹 ‘ 𝑧 ) mod 𝑁 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 321 |
315 308 317 319 320
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝐹 ‘ 𝑧 ) mod 𝑁 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 322 |
314 321
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( ( 𝐹 ‘ 𝑦 ) mod 𝑁 ) = ( ( 𝐹 ‘ 𝑧 ) mod 𝑁 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) ) |
| 323 |
|
moddvds |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐹 ‘ 𝑦 ) ∈ ℤ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℤ ) → ( ( ( 𝐹 ‘ 𝑦 ) mod 𝑁 ) = ( ( 𝐹 ‘ 𝑧 ) mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 324 |
265 271 277 323
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( ( 𝐹 ‘ 𝑦 ) mod 𝑁 ) = ( ( 𝐹 ‘ 𝑧 ) mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 325 |
|
f1of1 |
⊢ ( 𝐹 : 𝑇 –1-1-onto→ 𝑆 → 𝐹 : 𝑇 –1-1→ 𝑆 ) |
| 326 |
4 325
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑇 –1-1→ 𝑆 ) |
| 327 |
|
f1fveq |
⊢ ( ( 𝐹 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ 𝑦 = 𝑧 ) ) |
| 328 |
326 327
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ 𝑦 = 𝑧 ) ) |
| 329 |
322 324 328
|
3bitr3d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝑁 ∥ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ↔ 𝑦 = 𝑧 ) ) |
| 330 |
306 329
|
sylibd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝑁 ∥ ( 𝐴 · ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ∧ ( 𝑁 gcd 𝐴 ) = 1 ) → 𝑦 = 𝑧 ) ) |
| 331 |
302 330
|
mpan2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝑁 ∥ ( 𝐴 · ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) → 𝑦 = 𝑧 ) ) |
| 332 |
298 331
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 333 |
332
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑇 ∀ 𝑧 ∈ 𝑇 ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 334 |
|
dff13 |
⊢ ( 𝐺 : 𝑇 –1-1→ 𝑆 ↔ ( 𝐺 : 𝑇 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝑇 ∀ 𝑧 ∈ 𝑇 ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
| 335 |
160 333 334
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 : 𝑇 –1-1→ 𝑆 ) |
| 336 |
3
|
ovexi |
⊢ 𝑇 ∈ V |
| 337 |
336
|
f1oen |
⊢ ( 𝐹 : 𝑇 –1-1-onto→ 𝑆 → 𝑇 ≈ 𝑆 ) |
| 338 |
4 337
|
syl |
⊢ ( 𝜑 → 𝑇 ≈ 𝑆 ) |
| 339 |
|
fzofi |
⊢ ( 0 ..^ 𝑁 ) ∈ Fin |
| 340 |
|
ssfi |
⊢ ( ( ( 0 ..^ 𝑁 ) ∈ Fin ∧ 𝑆 ⊆ ( 0 ..^ 𝑁 ) ) → 𝑆 ∈ Fin ) |
| 341 |
339 159 340
|
mp2an |
⊢ 𝑆 ∈ Fin |
| 342 |
|
f1finf1o |
⊢ ( ( 𝑇 ≈ 𝑆 ∧ 𝑆 ∈ Fin ) → ( 𝐺 : 𝑇 –1-1→ 𝑆 ↔ 𝐺 : 𝑇 –1-1-onto→ 𝑆 ) ) |
| 343 |
338 341 342
|
sylancl |
⊢ ( 𝜑 → ( 𝐺 : 𝑇 –1-1→ 𝑆 ↔ 𝐺 : 𝑇 –1-1-onto→ 𝑆 ) ) |
| 344 |
335 343
|
mpbid |
⊢ ( 𝜑 → 𝐺 : 𝑇 –1-1-onto→ 𝑆 ) |
| 345 |
|
f1oco |
⊢ ( ( ◡ 𝐹 : 𝑆 –1-1-onto→ 𝑇 ∧ 𝐺 : 𝑇 –1-1-onto→ 𝑆 ) → ( ◡ 𝐹 ∘ 𝐺 ) : 𝑇 –1-1-onto→ 𝑇 ) |
| 346 |
264 344 345
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 ∘ 𝐺 ) : 𝑇 –1-1-onto→ 𝑇 ) |
| 347 |
|
f1oeq23 |
⊢ ( ( 𝑇 = ( 1 ... ( ϕ ‘ 𝑁 ) ) ∧ 𝑇 = ( 1 ... ( ϕ ‘ 𝑁 ) ) ) → ( ( ◡ 𝐹 ∘ 𝐺 ) : 𝑇 –1-1-onto→ 𝑇 ↔ ( ◡ 𝐹 ∘ 𝐺 ) : ( 1 ... ( ϕ ‘ 𝑁 ) ) –1-1-onto→ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) ) |
| 348 |
3 3 347
|
mp2an |
⊢ ( ( ◡ 𝐹 ∘ 𝐺 ) : 𝑇 –1-1-onto→ 𝑇 ↔ ( ◡ 𝐹 ∘ 𝐺 ) : ( 1 ... ( ϕ ‘ 𝑁 ) ) –1-1-onto→ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) |
| 349 |
346 348
|
sylib |
⊢ ( 𝜑 → ( ◡ 𝐹 ∘ 𝐺 ) : ( 1 ... ( ϕ ‘ 𝑁 ) ) –1-1-onto→ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) |
| 350 |
252
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 351 |
3
|
eleq2i |
⊢ ( 𝑤 ∈ 𝑇 ↔ 𝑤 ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) |
| 352 |
|
fvco3 |
⊢ ( ( 𝐺 : 𝑇 ⟶ 𝑆 ∧ 𝑤 ∈ 𝑇 ) → ( ( ◡ 𝐹 ∘ 𝐺 ) ‘ 𝑤 ) = ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) |
| 353 |
160 352
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → ( ( ◡ 𝐹 ∘ 𝐺 ) ‘ 𝑤 ) = ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) |
| 354 |
353
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ∘ 𝐺 ) ‘ 𝑤 ) ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 355 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → 𝐹 : 𝑇 –1-1-onto→ 𝑆 ) |
| 356 |
160
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ) |
| 357 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝑇 –1-1-onto→ 𝑆 ∧ ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) = ( 𝐺 ‘ 𝑤 ) ) |
| 358 |
355 356 357
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) = ( 𝐺 ‘ 𝑤 ) ) |
| 359 |
354 358
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑤 ) = ( 𝐹 ‘ ( ( ◡ 𝐹 ∘ 𝐺 ) ‘ 𝑤 ) ) ) |
| 360 |
351 359
|
sylan2br |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) → ( 𝐺 ‘ 𝑤 ) = ( 𝐹 ‘ ( ( ◡ 𝐹 ∘ 𝐺 ) ‘ 𝑤 ) ) ) |
| 361 |
257 259 261 67 262 349 350 360
|
seqf1o |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) = ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) |
| 362 |
361 254
|
eqeltrd |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ) |
| 363 |
|
moddvds |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ∈ ℤ ∧ ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ) → ( ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) ↔ 𝑁 ∥ ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) − ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) ) |
| 364 |
6 255 362 363
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) ↔ 𝑁 ∥ ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) − ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) ) |
| 365 |
247 364
|
mpbid |
⊢ ( 𝜑 → 𝑁 ∥ ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) − ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) |
| 366 |
254
|
zcnd |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ∈ ℂ ) |
| 367 |
366
|
mullidd |
⊢ ( 𝜑 → ( 1 · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) |
| 368 |
361 367
|
eqtr4d |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) = ( 1 · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) |
| 369 |
368
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) − ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) − ( 1 · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) ) |
| 370 |
250
|
zcnd |
⊢ ( 𝜑 → ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ∈ ℂ ) |
| 371 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 372 |
|
subdir |
⊢ ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ∈ ℂ ) → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) − ( 1 · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) ) |
| 373 |
371 372
|
mp3an2 |
⊢ ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ∈ ℂ ∧ ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ∈ ℂ ) → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) − ( 1 · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) ) |
| 374 |
370 366 373
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) − ( 1 · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) ) |
| 375 |
|
zsubcl |
⊢ ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ∧ 1 ∈ ℤ ) → ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ∈ ℤ ) |
| 376 |
250 84 375
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ∈ ℤ ) |
| 377 |
376
|
zcnd |
⊢ ( 𝜑 → ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ∈ ℂ ) |
| 378 |
377 366
|
mulcomd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) · ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ) |
| 379 |
369 374 378
|
3eqtr2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) − ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) · ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ) |
| 380 |
365 379
|
breqtrd |
⊢ ( 𝜑 → 𝑁 ∥ ( ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) · ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ) |
| 381 |
246
|
simprd |
⊢ ( 𝜑 → ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = 1 ) |
| 382 |
|
coprmdvds |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ∧ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ∈ ℤ ) → ( ( 𝑁 ∥ ( ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) · ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = 1 ) → 𝑁 ∥ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ) |
| 383 |
102 254 376 382
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ∥ ( ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) · ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = 1 ) → 𝑁 ∥ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ) |
| 384 |
380 381 383
|
mp2and |
⊢ ( 𝜑 → 𝑁 ∥ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) |
| 385 |
|
moddvds |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ∧ 1 ∈ ℤ ) → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ) |
| 386 |
84 385
|
mp3an3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ) → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ) |
| 387 |
6 250 386
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ) |
| 388 |
384 387
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ) |