Metamath Proof Explorer


Theorem pimgtmnf

Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -oo , is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses pimgtmnf.1
|- F/ x ph
pimgtmnf.2
|- ( ( ph /\ x e. A ) -> B e. RR )
Assertion pimgtmnf
|- ( ph -> { x e. A | -oo < B } = A )

Proof

Step Hyp Ref Expression
1 pimgtmnf.1
 |-  F/ x ph
2 pimgtmnf.2
 |-  ( ( ph /\ x e. A ) -> B e. RR )
3 eqidd
 |-  ( ph -> ( x e. A |-> B ) = ( x e. A |-> B ) )
4 3 2 fvmpt2d
 |-  ( ( ph /\ x e. A ) -> ( ( x e. A |-> B ) ` x ) = B )
5 4 eqcomd
 |-  ( ( ph /\ x e. A ) -> B = ( ( x e. A |-> B ) ` x ) )
6 5 breq2d
 |-  ( ( ph /\ x e. A ) -> ( -oo < B <-> -oo < ( ( x e. A |-> B ) ` x ) ) )
7 1 6 rabbida
 |-  ( ph -> { x e. A | -oo < B } = { x e. A | -oo < ( ( x e. A |-> B ) ` x ) } )
8 nfmpt1
 |-  F/_ x ( x e. A |-> B )
9 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
10 1 2 9 fmptdf
 |-  ( ph -> ( x e. A |-> B ) : A --> RR )
11 8 10 pimgtmnf2
 |-  ( ph -> { x e. A | -oo < ( ( x e. A |-> B ) ` x ) } = A )
12 7 11 eqtrd
 |-  ( ph -> { x e. A | -oo < B } = A )