Step |
Hyp |
Ref |
Expression |
1 |
|
pimgtmnf.1 |
|- F/ x ph |
2 |
|
pimgtmnf.2 |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
3 |
|
eqidd |
|- ( ph -> ( x e. A |-> B ) = ( x e. A |-> B ) ) |
4 |
3 2
|
fvmpt2d |
|- ( ( ph /\ x e. A ) -> ( ( x e. A |-> B ) ` x ) = B ) |
5 |
4
|
eqcomd |
|- ( ( ph /\ x e. A ) -> B = ( ( x e. A |-> B ) ` x ) ) |
6 |
5
|
breq2d |
|- ( ( ph /\ x e. A ) -> ( -oo < B <-> -oo < ( ( x e. A |-> B ) ` x ) ) ) |
7 |
1 6
|
rabbida |
|- ( ph -> { x e. A | -oo < B } = { x e. A | -oo < ( ( x e. A |-> B ) ` x ) } ) |
8 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> B ) |
9 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
10 |
1 2 9
|
fmptdf |
|- ( ph -> ( x e. A |-> B ) : A --> RR ) |
11 |
8 10
|
pimgtmnf2 |
|- ( ph -> { x e. A | -oo < ( ( x e. A |-> B ) ` x ) } = A ) |
12 |
7 11
|
eqtrd |
|- ( ph -> { x e. A | -oo < B } = A ) |