Metamath Proof Explorer


Theorem pimgtmnf

Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -oo , is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses pimgtmnf.1
|- F/ x ph
pimgtmnf.2
|- ( ( ph /\ x e. A ) -> B e. RR )
Assertion pimgtmnf
|- ( ph -> { x e. A | -oo < B } = A )

Proof

Step Hyp Ref Expression
1 pimgtmnf.1
 |-  F/ x ph
2 pimgtmnf.2
 |-  ( ( ph /\ x e. A ) -> B e. RR )
3 nfcv
 |-  F/_ x A
4 1 3 2 pimgtmnff
 |-  ( ph -> { x e. A | -oo < B } = A )