Step |
Hyp |
Ref |
Expression |
1 |
|
pimgtmnf.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
pimgtmnf.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
3 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
4 |
3 2
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
5 |
4
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
6 |
5
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( -∞ < 𝐵 ↔ -∞ < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) |
7 |
1 6
|
rabbida |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ -∞ < 𝐵 } = { 𝑥 ∈ 𝐴 ∣ -∞ < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) } ) |
8 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
9 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
10 |
1 2 9
|
fmptdf |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) |
11 |
8 10
|
pimgtmnf2 |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ -∞ < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) } = 𝐴 ) |
12 |
7 11
|
eqtrd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ -∞ < 𝐵 } = 𝐴 ) |