Metamath Proof Explorer


Theorem pimgtmnf

Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -oo , is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses pimgtmnf.1 𝑥 𝜑
pimgtmnf.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
Assertion pimgtmnf ( 𝜑 → { 𝑥𝐴 ∣ -∞ < 𝐵 } = 𝐴 )

Proof

Step Hyp Ref Expression
1 pimgtmnf.1 𝑥 𝜑
2 pimgtmnf.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
3 nfcv 𝑥 𝐴
4 1 3 2 pimgtmnff ( 𝜑 → { 𝑥𝐴 ∣ -∞ < 𝐵 } = 𝐴 )