Metamath Proof Explorer


Theorem pimgtmnf

Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -oo , is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses pimgtmnf.1 𝑥 𝜑
pimgtmnf.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
Assertion pimgtmnf ( 𝜑 → { 𝑥𝐴 ∣ -∞ < 𝐵 } = 𝐴 )

Proof

Step Hyp Ref Expression
1 pimgtmnf.1 𝑥 𝜑
2 pimgtmnf.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
3 eqidd ( 𝜑 → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 ) )
4 3 2 fvmpt2d ( ( 𝜑𝑥𝐴 ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )
5 4 eqcomd ( ( 𝜑𝑥𝐴 ) → 𝐵 = ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) )
6 5 breq2d ( ( 𝜑𝑥𝐴 ) → ( -∞ < 𝐵 ↔ -∞ < ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) ) )
7 1 6 rabbida ( 𝜑 → { 𝑥𝐴 ∣ -∞ < 𝐵 } = { 𝑥𝐴 ∣ -∞ < ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) } )
8 nfmpt1 𝑥 ( 𝑥𝐴𝐵 )
9 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
10 1 2 9 fmptdf ( 𝜑 → ( 𝑥𝐴𝐵 ) : 𝐴 ⟶ ℝ )
11 8 10 pimgtmnf2 ( 𝜑 → { 𝑥𝐴 ∣ -∞ < ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) } = 𝐴 )
12 7 11 eqtrd ( 𝜑 → { 𝑥𝐴 ∣ -∞ < 𝐵 } = 𝐴 )