| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pimgtmnf2.1 | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 2 |  | pimgtmnf2.2 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℝ ) | 
						
							| 3 |  | ssrab2 | ⊢ { 𝑥  ∈  𝐴  ∣  -∞  <  ( 𝐹 ‘ 𝑥 ) }  ⊆  𝐴 | 
						
							| 4 | 3 | a1i | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  -∞  <  ( 𝐹 ‘ 𝑥 ) }  ⊆  𝐴 ) | 
						
							| 5 |  | ssid | ⊢ 𝐴  ⊆  𝐴 | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →  𝐴  ⊆  𝐴 ) | 
						
							| 7 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 8 | 7 | mnfltd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐴 )  →  -∞  <  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 9 | 8 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝐴 -∞  <  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑥 -∞ | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑥  < | 
						
							| 12 |  | nfcv | ⊢ Ⅎ 𝑥 𝑦 | 
						
							| 13 | 1 12 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) | 
						
							| 14 | 10 11 13 | nfbr | ⊢ Ⅎ 𝑥 -∞  <  ( 𝐹 ‘ 𝑦 ) | 
						
							| 15 |  | nfv | ⊢ Ⅎ 𝑦 -∞  <  ( 𝐹 ‘ 𝑥 ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 17 | 16 | breq2d | ⊢ ( 𝑦  =  𝑥  →  ( -∞  <  ( 𝐹 ‘ 𝑦 )  ↔  -∞  <  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 18 | 14 15 17 | cbvralw | ⊢ ( ∀ 𝑦  ∈  𝐴 -∞  <  ( 𝐹 ‘ 𝑦 )  ↔  ∀ 𝑥  ∈  𝐴 -∞  <  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 19 | 9 18 | sylib | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 -∞  <  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 20 | 6 19 | jca | ⊢ ( 𝜑  →  ( 𝐴  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝐴 -∞  <  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 21 |  | nfcv | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 22 | 21 21 | ssrabf | ⊢ ( 𝐴  ⊆  { 𝑥  ∈  𝐴  ∣  -∞  <  ( 𝐹 ‘ 𝑥 ) }  ↔  ( 𝐴  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝐴 -∞  <  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 23 | 20 22 | sylibr | ⊢ ( 𝜑  →  𝐴  ⊆  { 𝑥  ∈  𝐴  ∣  -∞  <  ( 𝐹 ‘ 𝑥 ) } ) | 
						
							| 24 | 4 23 | eqssd | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  -∞  <  ( 𝐹 ‘ 𝑥 ) }  =  𝐴 ) |