Metamath Proof Explorer


Theorem pimgtmnf2

Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -oo , is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses pimgtmnf2.1 𝑥 𝐹
pimgtmnf2.2 ( 𝜑𝐹 : 𝐴 ⟶ ℝ )
Assertion pimgtmnf2 ( 𝜑 → { 𝑥𝐴 ∣ -∞ < ( 𝐹𝑥 ) } = 𝐴 )

Proof

Step Hyp Ref Expression
1 pimgtmnf2.1 𝑥 𝐹
2 pimgtmnf2.2 ( 𝜑𝐹 : 𝐴 ⟶ ℝ )
3 ssrab2 { 𝑥𝐴 ∣ -∞ < ( 𝐹𝑥 ) } ⊆ 𝐴
4 3 a1i ( 𝜑 → { 𝑥𝐴 ∣ -∞ < ( 𝐹𝑥 ) } ⊆ 𝐴 )
5 ssid 𝐴𝐴
6 5 a1i ( 𝜑𝐴𝐴 )
7 2 ffvelrnda ( ( 𝜑𝑦𝐴 ) → ( 𝐹𝑦 ) ∈ ℝ )
8 7 mnfltd ( ( 𝜑𝑦𝐴 ) → -∞ < ( 𝐹𝑦 ) )
9 8 ralrimiva ( 𝜑 → ∀ 𝑦𝐴 -∞ < ( 𝐹𝑦 ) )
10 nfcv 𝑥 -∞
11 nfcv 𝑥 <
12 nfcv 𝑥 𝑦
13 1 12 nffv 𝑥 ( 𝐹𝑦 )
14 10 11 13 nfbr 𝑥 -∞ < ( 𝐹𝑦 )
15 nfv 𝑦 -∞ < ( 𝐹𝑥 )
16 fveq2 ( 𝑦 = 𝑥 → ( 𝐹𝑦 ) = ( 𝐹𝑥 ) )
17 16 breq2d ( 𝑦 = 𝑥 → ( -∞ < ( 𝐹𝑦 ) ↔ -∞ < ( 𝐹𝑥 ) ) )
18 14 15 17 cbvralw ( ∀ 𝑦𝐴 -∞ < ( 𝐹𝑦 ) ↔ ∀ 𝑥𝐴 -∞ < ( 𝐹𝑥 ) )
19 9 18 sylib ( 𝜑 → ∀ 𝑥𝐴 -∞ < ( 𝐹𝑥 ) )
20 6 19 jca ( 𝜑 → ( 𝐴𝐴 ∧ ∀ 𝑥𝐴 -∞ < ( 𝐹𝑥 ) ) )
21 nfcv 𝑥 𝐴
22 21 21 ssrabf ( 𝐴 ⊆ { 𝑥𝐴 ∣ -∞ < ( 𝐹𝑥 ) } ↔ ( 𝐴𝐴 ∧ ∀ 𝑥𝐴 -∞ < ( 𝐹𝑥 ) ) )
23 20 22 sylibr ( 𝜑𝐴 ⊆ { 𝑥𝐴 ∣ -∞ < ( 𝐹𝑥 ) } )
24 4 23 eqssd ( 𝜑 → { 𝑥𝐴 ∣ -∞ < ( 𝐹𝑥 ) } = 𝐴 )