Step |
Hyp |
Ref |
Expression |
1 |
|
pimgtmnf2.1 |
⊢ Ⅎ 𝑥 𝐹 |
2 |
|
pimgtmnf2.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) |
3 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ -∞ < ( 𝐹 ‘ 𝑥 ) } ⊆ 𝐴 |
4 |
3
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ -∞ < ( 𝐹 ‘ 𝑥 ) } ⊆ 𝐴 ) |
5 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
6 |
5
|
a1i |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐴 ) |
7 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
8 |
7
|
mnfltd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → -∞ < ( 𝐹 ‘ 𝑦 ) ) |
9 |
8
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 -∞ < ( 𝐹 ‘ 𝑦 ) ) |
10 |
|
nfcv |
⊢ Ⅎ 𝑥 -∞ |
11 |
|
nfcv |
⊢ Ⅎ 𝑥 < |
12 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
13 |
1 12
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) |
14 |
10 11 13
|
nfbr |
⊢ Ⅎ 𝑥 -∞ < ( 𝐹 ‘ 𝑦 ) |
15 |
|
nfv |
⊢ Ⅎ 𝑦 -∞ < ( 𝐹 ‘ 𝑥 ) |
16 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
17 |
16
|
breq2d |
⊢ ( 𝑦 = 𝑥 → ( -∞ < ( 𝐹 ‘ 𝑦 ) ↔ -∞ < ( 𝐹 ‘ 𝑥 ) ) ) |
18 |
14 15 17
|
cbvralw |
⊢ ( ∀ 𝑦 ∈ 𝐴 -∞ < ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 -∞ < ( 𝐹 ‘ 𝑥 ) ) |
19 |
9 18
|
sylib |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 -∞ < ( 𝐹 ‘ 𝑥 ) ) |
20 |
6 19
|
jca |
⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 -∞ < ( 𝐹 ‘ 𝑥 ) ) ) |
21 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
22 |
21 21
|
ssrabf |
⊢ ( 𝐴 ⊆ { 𝑥 ∈ 𝐴 ∣ -∞ < ( 𝐹 ‘ 𝑥 ) } ↔ ( 𝐴 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 -∞ < ( 𝐹 ‘ 𝑥 ) ) ) |
23 |
20 22
|
sylibr |
⊢ ( 𝜑 → 𝐴 ⊆ { 𝑥 ∈ 𝐴 ∣ -∞ < ( 𝐹 ‘ 𝑥 ) } ) |
24 |
4 23
|
eqssd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ -∞ < ( 𝐹 ‘ 𝑥 ) } = 𝐴 ) |