| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pimdecfgtioc.x | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | pimdecfgtioc.a | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 3 |  | pimdecfgtioc.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℝ* ) | 
						
							| 4 |  | pimdecfgtioc.i | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 5 |  | pimdecfgtioc.r | ⊢ ( 𝜑  →  𝑅  ∈  ℝ* ) | 
						
							| 6 |  | pimdecfgtioc.y | ⊢ 𝑌  =  { 𝑥  ∈  𝐴  ∣  𝑅  <  ( 𝐹 ‘ 𝑥 ) } | 
						
							| 7 |  | pimdecfgtioc.c | ⊢ 𝑆  =  sup ( 𝑌 ,  ℝ* ,   <  ) | 
						
							| 8 |  | pimdecfgtioc.e | ⊢ ( 𝜑  →  𝑆  ∈  𝑌 ) | 
						
							| 9 |  | pimdecfgtioc.d | ⊢ 𝐼  =  ( -∞ (,] 𝑆 ) | 
						
							| 10 |  | ssrab2 | ⊢ { 𝑥  ∈  𝐴  ∣  𝑅  <  ( 𝐹 ‘ 𝑥 ) }  ⊆  𝐴 | 
						
							| 11 | 6 10 | eqsstri | ⊢ 𝑌  ⊆  𝐴 | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  𝑌  ⊆  𝐴 ) | 
						
							| 13 | 12 2 | sstrd | ⊢ ( 𝜑  →  𝑌  ⊆  ℝ ) | 
						
							| 14 | 13 7 8 9 | ressiocsup | ⊢ ( 𝜑  →  𝑌  ⊆  𝐼 ) | 
						
							| 15 | 14 12 | ssind | ⊢ ( 𝜑  →  𝑌  ⊆  ( 𝐼  ∩  𝐴 ) ) | 
						
							| 16 |  | elinel2 | ⊢ ( 𝑥  ∈  ( 𝐼  ∩  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∩  𝐴 ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 18 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∩  𝐴 ) )  →  𝑅  ∈  ℝ* ) | 
						
							| 19 | 11 8 | sselid | ⊢ ( 𝜑  →  𝑆  ∈  𝐴 ) | 
						
							| 20 | 3 19 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑆 )  ∈  ℝ* ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∩  𝐴 ) )  →  ( 𝐹 ‘ 𝑆 )  ∈  ℝ* ) | 
						
							| 22 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∩  𝐴 ) )  →  𝐹 : 𝐴 ⟶ ℝ* ) | 
						
							| 23 | 22 17 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∩  𝐴 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 24 | 8 6 | eleqtrdi | ⊢ ( 𝜑  →  𝑆  ∈  { 𝑥  ∈  𝐴  ∣  𝑅  <  ( 𝐹 ‘ 𝑥 ) } ) | 
						
							| 25 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  𝐴  ∣  𝑅  <  ( 𝐹 ‘ 𝑥 ) } | 
						
							| 26 | 6 25 | nfcxfr | ⊢ Ⅎ 𝑥 𝑌 | 
						
							| 27 |  | nfcv | ⊢ Ⅎ 𝑥 ℝ* | 
						
							| 28 |  | nfcv | ⊢ Ⅎ 𝑥  < | 
						
							| 29 | 26 27 28 | nfsup | ⊢ Ⅎ 𝑥 sup ( 𝑌 ,  ℝ* ,   <  ) | 
						
							| 30 | 7 29 | nfcxfr | ⊢ Ⅎ 𝑥 𝑆 | 
						
							| 31 |  | nfcv | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 32 |  | nfcv | ⊢ Ⅎ 𝑥 𝑅 | 
						
							| 33 |  | nfcv | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 34 | 33 30 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑆 ) | 
						
							| 35 | 32 28 34 | nfbr | ⊢ Ⅎ 𝑥 𝑅  <  ( 𝐹 ‘ 𝑆 ) | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑥  =  𝑆  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑆 ) ) | 
						
							| 37 | 36 | breq2d | ⊢ ( 𝑥  =  𝑆  →  ( 𝑅  <  ( 𝐹 ‘ 𝑥 )  ↔  𝑅  <  ( 𝐹 ‘ 𝑆 ) ) ) | 
						
							| 38 | 30 31 35 37 | elrabf | ⊢ ( 𝑆  ∈  { 𝑥  ∈  𝐴  ∣  𝑅  <  ( 𝐹 ‘ 𝑥 ) }  ↔  ( 𝑆  ∈  𝐴  ∧  𝑅  <  ( 𝐹 ‘ 𝑆 ) ) ) | 
						
							| 39 | 24 38 | sylib | ⊢ ( 𝜑  →  ( 𝑆  ∈  𝐴  ∧  𝑅  <  ( 𝐹 ‘ 𝑆 ) ) ) | 
						
							| 40 | 39 | simprd | ⊢ ( 𝜑  →  𝑅  <  ( 𝐹 ‘ 𝑆 ) ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∩  𝐴 ) )  →  𝑅  <  ( 𝐹 ‘ 𝑆 ) ) | 
						
							| 42 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∩  𝐴 ) )  →  𝑆  ∈  𝐴 ) | 
						
							| 43 | 4 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∀ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 44 | 17 43 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∩  𝐴 ) )  →  ∀ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 45 | 42 44 | jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∩  𝐴 ) )  →  ( 𝑆  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 46 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 47 | 46 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∩  𝐴 ) )  →  -∞  ∈  ℝ* ) | 
						
							| 48 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 49 | 13 8 | sseldd | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) | 
						
							| 50 | 48 49 | sselid | ⊢ ( 𝜑  →  𝑆  ∈  ℝ* ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∩  𝐴 ) )  →  𝑆  ∈  ℝ* ) | 
						
							| 52 |  | elinel1 | ⊢ ( 𝑥  ∈  ( 𝐼  ∩  𝐴 )  →  𝑥  ∈  𝐼 ) | 
						
							| 53 | 52 9 | eleqtrdi | ⊢ ( 𝑥  ∈  ( 𝐼  ∩  𝐴 )  →  𝑥  ∈  ( -∞ (,] 𝑆 ) ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∩  𝐴 ) )  →  𝑥  ∈  ( -∞ (,] 𝑆 ) ) | 
						
							| 55 |  | iocleub | ⊢ ( ( -∞  ∈  ℝ*  ∧  𝑆  ∈  ℝ*  ∧  𝑥  ∈  ( -∞ (,] 𝑆 ) )  →  𝑥  ≤  𝑆 ) | 
						
							| 56 | 47 51 54 55 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∩  𝐴 ) )  →  𝑥  ≤  𝑆 ) | 
						
							| 57 |  | breq2 | ⊢ ( 𝑦  =  𝑆  →  ( 𝑥  ≤  𝑦  ↔  𝑥  ≤  𝑆 ) ) | 
						
							| 58 |  | fveq2 | ⊢ ( 𝑦  =  𝑆  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑆 ) ) | 
						
							| 59 | 58 | breq1d | ⊢ ( 𝑦  =  𝑆  →  ( ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝑆 )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 60 | 57 59 | imbi12d | ⊢ ( 𝑦  =  𝑆  →  ( ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 ) )  ↔  ( 𝑥  ≤  𝑆  →  ( 𝐹 ‘ 𝑆 )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 61 | 60 | rspcva | ⊢ ( ( 𝑆  ∈  𝐴  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑥 ) ) )  →  ( 𝑥  ≤  𝑆  →  ( 𝐹 ‘ 𝑆 )  ≤  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 62 | 45 56 61 | sylc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∩  𝐴 ) )  →  ( 𝐹 ‘ 𝑆 )  ≤  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 63 | 18 21 23 41 62 | xrltletrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∩  𝐴 ) )  →  𝑅  <  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 64 | 17 63 | jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∩  𝐴 ) )  →  ( 𝑥  ∈  𝐴  ∧  𝑅  <  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 65 | 6 | reqabi | ⊢ ( 𝑥  ∈  𝑌  ↔  ( 𝑥  ∈  𝐴  ∧  𝑅  <  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 66 | 64 65 | sylibr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐼  ∩  𝐴 ) )  →  𝑥  ∈  𝑌 ) | 
						
							| 67 | 66 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐼  ∩  𝐴 )  →  𝑥  ∈  𝑌 ) ) | 
						
							| 68 | 1 67 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐼  ∩  𝐴 ) 𝑥  ∈  𝑌 ) | 
						
							| 69 |  | nfv | ⊢ Ⅎ 𝑥 𝑧  ∈  ( 𝐼  ∩  𝐴 ) | 
						
							| 70 | 69 | nfci | ⊢ Ⅎ 𝑥 ( 𝐼  ∩  𝐴 ) | 
						
							| 71 | 70 26 | dfss3f | ⊢ ( ( 𝐼  ∩  𝐴 )  ⊆  𝑌  ↔  ∀ 𝑥  ∈  ( 𝐼  ∩  𝐴 ) 𝑥  ∈  𝑌 ) | 
						
							| 72 | 68 71 | sylibr | ⊢ ( 𝜑  →  ( 𝐼  ∩  𝐴 )  ⊆  𝑌 ) | 
						
							| 73 | 15 72 | eqssd | ⊢ ( 𝜑  →  𝑌  =  ( 𝐼  ∩  𝐴 ) ) |