Metamath Proof Explorer


Theorem pimdecfgtioc

Description: Given a nonincreasing function, the preimage of an unbounded above, open interval, when the supremum of the preimage belongs to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses pimdecfgtioc.x 𝑥 𝜑
pimdecfgtioc.a ( 𝜑𝐴 ⊆ ℝ )
pimdecfgtioc.f ( 𝜑𝐹 : 𝐴 ⟶ ℝ* )
pimdecfgtioc.i ( 𝜑 → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) )
pimdecfgtioc.r ( 𝜑𝑅 ∈ ℝ* )
pimdecfgtioc.y 𝑌 = { 𝑥𝐴𝑅 < ( 𝐹𝑥 ) }
pimdecfgtioc.c 𝑆 = sup ( 𝑌 , ℝ* , < )
pimdecfgtioc.e ( 𝜑𝑆𝑌 )
pimdecfgtioc.d 𝐼 = ( -∞ (,] 𝑆 )
Assertion pimdecfgtioc ( 𝜑𝑌 = ( 𝐼𝐴 ) )

Proof

Step Hyp Ref Expression
1 pimdecfgtioc.x 𝑥 𝜑
2 pimdecfgtioc.a ( 𝜑𝐴 ⊆ ℝ )
3 pimdecfgtioc.f ( 𝜑𝐹 : 𝐴 ⟶ ℝ* )
4 pimdecfgtioc.i ( 𝜑 → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) )
5 pimdecfgtioc.r ( 𝜑𝑅 ∈ ℝ* )
6 pimdecfgtioc.y 𝑌 = { 𝑥𝐴𝑅 < ( 𝐹𝑥 ) }
7 pimdecfgtioc.c 𝑆 = sup ( 𝑌 , ℝ* , < )
8 pimdecfgtioc.e ( 𝜑𝑆𝑌 )
9 pimdecfgtioc.d 𝐼 = ( -∞ (,] 𝑆 )
10 ssrab2 { 𝑥𝐴𝑅 < ( 𝐹𝑥 ) } ⊆ 𝐴
11 6 10 eqsstri 𝑌𝐴
12 11 a1i ( 𝜑𝑌𝐴 )
13 12 2 sstrd ( 𝜑𝑌 ⊆ ℝ )
14 13 7 8 9 ressiocsup ( 𝜑𝑌𝐼 )
15 14 12 ssind ( 𝜑𝑌 ⊆ ( 𝐼𝐴 ) )
16 elinel2 ( 𝑥 ∈ ( 𝐼𝐴 ) → 𝑥𝐴 )
17 16 adantl ( ( 𝜑𝑥 ∈ ( 𝐼𝐴 ) ) → 𝑥𝐴 )
18 5 adantr ( ( 𝜑𝑥 ∈ ( 𝐼𝐴 ) ) → 𝑅 ∈ ℝ* )
19 11 8 sseldi ( 𝜑𝑆𝐴 )
20 3 19 ffvelrnd ( 𝜑 → ( 𝐹𝑆 ) ∈ ℝ* )
21 20 adantr ( ( 𝜑𝑥 ∈ ( 𝐼𝐴 ) ) → ( 𝐹𝑆 ) ∈ ℝ* )
22 3 adantr ( ( 𝜑𝑥 ∈ ( 𝐼𝐴 ) ) → 𝐹 : 𝐴 ⟶ ℝ* )
23 22 17 ffvelrnd ( ( 𝜑𝑥 ∈ ( 𝐼𝐴 ) ) → ( 𝐹𝑥 ) ∈ ℝ* )
24 8 6 eleqtrdi ( 𝜑𝑆 ∈ { 𝑥𝐴𝑅 < ( 𝐹𝑥 ) } )
25 nfrab1 𝑥 { 𝑥𝐴𝑅 < ( 𝐹𝑥 ) }
26 6 25 nfcxfr 𝑥 𝑌
27 nfcv 𝑥*
28 nfcv 𝑥 <
29 26 27 28 nfsup 𝑥 sup ( 𝑌 , ℝ* , < )
30 7 29 nfcxfr 𝑥 𝑆
31 nfcv 𝑥 𝐴
32 nfcv 𝑥 𝑅
33 nfcv 𝑥 𝐹
34 33 30 nffv 𝑥 ( 𝐹𝑆 )
35 32 28 34 nfbr 𝑥 𝑅 < ( 𝐹𝑆 )
36 fveq2 ( 𝑥 = 𝑆 → ( 𝐹𝑥 ) = ( 𝐹𝑆 ) )
37 36 breq2d ( 𝑥 = 𝑆 → ( 𝑅 < ( 𝐹𝑥 ) ↔ 𝑅 < ( 𝐹𝑆 ) ) )
38 30 31 35 37 elrabf ( 𝑆 ∈ { 𝑥𝐴𝑅 < ( 𝐹𝑥 ) } ↔ ( 𝑆𝐴𝑅 < ( 𝐹𝑆 ) ) )
39 24 38 sylib ( 𝜑 → ( 𝑆𝐴𝑅 < ( 𝐹𝑆 ) ) )
40 39 simprd ( 𝜑𝑅 < ( 𝐹𝑆 ) )
41 40 adantr ( ( 𝜑𝑥 ∈ ( 𝐼𝐴 ) ) → 𝑅 < ( 𝐹𝑆 ) )
42 19 adantr ( ( 𝜑𝑥 ∈ ( 𝐼𝐴 ) ) → 𝑆𝐴 )
43 4 r19.21bi ( ( 𝜑𝑥𝐴 ) → ∀ 𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) )
44 17 43 syldan ( ( 𝜑𝑥 ∈ ( 𝐼𝐴 ) ) → ∀ 𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) )
45 42 44 jca ( ( 𝜑𝑥 ∈ ( 𝐼𝐴 ) ) → ( 𝑆𝐴 ∧ ∀ 𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) ) )
46 mnfxr -∞ ∈ ℝ*
47 46 a1i ( ( 𝜑𝑥 ∈ ( 𝐼𝐴 ) ) → -∞ ∈ ℝ* )
48 ressxr ℝ ⊆ ℝ*
49 13 8 sseldd ( 𝜑𝑆 ∈ ℝ )
50 48 49 sseldi ( 𝜑𝑆 ∈ ℝ* )
51 50 adantr ( ( 𝜑𝑥 ∈ ( 𝐼𝐴 ) ) → 𝑆 ∈ ℝ* )
52 elinel1 ( 𝑥 ∈ ( 𝐼𝐴 ) → 𝑥𝐼 )
53 52 9 eleqtrdi ( 𝑥 ∈ ( 𝐼𝐴 ) → 𝑥 ∈ ( -∞ (,] 𝑆 ) )
54 53 adantl ( ( 𝜑𝑥 ∈ ( 𝐼𝐴 ) ) → 𝑥 ∈ ( -∞ (,] 𝑆 ) )
55 iocleub ( ( -∞ ∈ ℝ*𝑆 ∈ ℝ*𝑥 ∈ ( -∞ (,] 𝑆 ) ) → 𝑥𝑆 )
56 47 51 54 55 syl3anc ( ( 𝜑𝑥 ∈ ( 𝐼𝐴 ) ) → 𝑥𝑆 )
57 breq2 ( 𝑦 = 𝑆 → ( 𝑥𝑦𝑥𝑆 ) )
58 fveq2 ( 𝑦 = 𝑆 → ( 𝐹𝑦 ) = ( 𝐹𝑆 ) )
59 58 breq1d ( 𝑦 = 𝑆 → ( ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ↔ ( 𝐹𝑆 ) ≤ ( 𝐹𝑥 ) ) )
60 57 59 imbi12d ( 𝑦 = 𝑆 → ( ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) ↔ ( 𝑥𝑆 → ( 𝐹𝑆 ) ≤ ( 𝐹𝑥 ) ) ) )
61 60 rspcva ( ( 𝑆𝐴 ∧ ∀ 𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑦 ) ≤ ( 𝐹𝑥 ) ) ) → ( 𝑥𝑆 → ( 𝐹𝑆 ) ≤ ( 𝐹𝑥 ) ) )
62 45 56 61 sylc ( ( 𝜑𝑥 ∈ ( 𝐼𝐴 ) ) → ( 𝐹𝑆 ) ≤ ( 𝐹𝑥 ) )
63 18 21 23 41 62 xrltletrd ( ( 𝜑𝑥 ∈ ( 𝐼𝐴 ) ) → 𝑅 < ( 𝐹𝑥 ) )
64 17 63 jca ( ( 𝜑𝑥 ∈ ( 𝐼𝐴 ) ) → ( 𝑥𝐴𝑅 < ( 𝐹𝑥 ) ) )
65 6 rabeq2i ( 𝑥𝑌 ↔ ( 𝑥𝐴𝑅 < ( 𝐹𝑥 ) ) )
66 64 65 sylibr ( ( 𝜑𝑥 ∈ ( 𝐼𝐴 ) ) → 𝑥𝑌 )
67 66 ex ( 𝜑 → ( 𝑥 ∈ ( 𝐼𝐴 ) → 𝑥𝑌 ) )
68 1 67 ralrimi ( 𝜑 → ∀ 𝑥 ∈ ( 𝐼𝐴 ) 𝑥𝑌 )
69 nfv 𝑥 𝑧 ∈ ( 𝐼𝐴 )
70 69 nfci 𝑥 ( 𝐼𝐴 )
71 70 26 dfss3f ( ( 𝐼𝐴 ) ⊆ 𝑌 ↔ ∀ 𝑥 ∈ ( 𝐼𝐴 ) 𝑥𝑌 )
72 68 71 sylibr ( 𝜑 → ( 𝐼𝐴 ) ⊆ 𝑌 )
73 15 72 eqssd ( 𝜑𝑌 = ( 𝐼𝐴 ) )