| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pimdecfgtioc.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
pimdecfgtioc.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 3 |
|
pimdecfgtioc.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |
| 4 |
|
pimdecfgtioc.i |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 5 |
|
pimdecfgtioc.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
| 6 |
|
pimdecfgtioc.y |
⊢ 𝑌 = { 𝑥 ∈ 𝐴 ∣ 𝑅 < ( 𝐹 ‘ 𝑥 ) } |
| 7 |
|
pimdecfgtioc.c |
⊢ 𝑆 = sup ( 𝑌 , ℝ* , < ) |
| 8 |
|
pimdecfgtioc.e |
⊢ ( 𝜑 → 𝑆 ∈ 𝑌 ) |
| 9 |
|
pimdecfgtioc.d |
⊢ 𝐼 = ( -∞ (,] 𝑆 ) |
| 10 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝑅 < ( 𝐹 ‘ 𝑥 ) } ⊆ 𝐴 |
| 11 |
6 10
|
eqsstri |
⊢ 𝑌 ⊆ 𝐴 |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → 𝑌 ⊆ 𝐴 ) |
| 13 |
12 2
|
sstrd |
⊢ ( 𝜑 → 𝑌 ⊆ ℝ ) |
| 14 |
13 7 8 9
|
ressiocsup |
⊢ ( 𝜑 → 𝑌 ⊆ 𝐼 ) |
| 15 |
14 12
|
ssind |
⊢ ( 𝜑 → 𝑌 ⊆ ( 𝐼 ∩ 𝐴 ) ) |
| 16 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) |
| 18 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑅 ∈ ℝ* ) |
| 19 |
11 8
|
sselid |
⊢ ( 𝜑 → 𝑆 ∈ 𝐴 ) |
| 20 |
3 19
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑆 ) ∈ ℝ* ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( 𝐹 ‘ 𝑆 ) ∈ ℝ* ) |
| 22 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ ℝ* ) |
| 23 |
22 17
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
| 24 |
8 6
|
eleqtrdi |
⊢ ( 𝜑 → 𝑆 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑅 < ( 𝐹 ‘ 𝑥 ) } ) |
| 25 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ 𝑅 < ( 𝐹 ‘ 𝑥 ) } |
| 26 |
6 25
|
nfcxfr |
⊢ Ⅎ 𝑥 𝑌 |
| 27 |
|
nfcv |
⊢ Ⅎ 𝑥 ℝ* |
| 28 |
|
nfcv |
⊢ Ⅎ 𝑥 < |
| 29 |
26 27 28
|
nfsup |
⊢ Ⅎ 𝑥 sup ( 𝑌 , ℝ* , < ) |
| 30 |
7 29
|
nfcxfr |
⊢ Ⅎ 𝑥 𝑆 |
| 31 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
| 32 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑅 |
| 33 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐹 |
| 34 |
33 30
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑆 ) |
| 35 |
32 28 34
|
nfbr |
⊢ Ⅎ 𝑥 𝑅 < ( 𝐹 ‘ 𝑆 ) |
| 36 |
|
fveq2 |
⊢ ( 𝑥 = 𝑆 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑆 ) ) |
| 37 |
36
|
breq2d |
⊢ ( 𝑥 = 𝑆 → ( 𝑅 < ( 𝐹 ‘ 𝑥 ) ↔ 𝑅 < ( 𝐹 ‘ 𝑆 ) ) ) |
| 38 |
30 31 35 37
|
elrabf |
⊢ ( 𝑆 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑅 < ( 𝐹 ‘ 𝑥 ) } ↔ ( 𝑆 ∈ 𝐴 ∧ 𝑅 < ( 𝐹 ‘ 𝑆 ) ) ) |
| 39 |
24 38
|
sylib |
⊢ ( 𝜑 → ( 𝑆 ∈ 𝐴 ∧ 𝑅 < ( 𝐹 ‘ 𝑆 ) ) ) |
| 40 |
39
|
simprd |
⊢ ( 𝜑 → 𝑅 < ( 𝐹 ‘ 𝑆 ) ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑅 < ( 𝐹 ‘ 𝑆 ) ) |
| 42 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑆 ∈ 𝐴 ) |
| 43 |
4
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 44 |
17 43
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 45 |
42 44
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( 𝑆 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 46 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 47 |
46
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → -∞ ∈ ℝ* ) |
| 48 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 49 |
13 8
|
sseldd |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| 50 |
48 49
|
sselid |
⊢ ( 𝜑 → 𝑆 ∈ ℝ* ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑆 ∈ ℝ* ) |
| 52 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) → 𝑥 ∈ 𝐼 ) |
| 53 |
52 9
|
eleqtrdi |
⊢ ( 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) → 𝑥 ∈ ( -∞ (,] 𝑆 ) ) |
| 54 |
53
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑥 ∈ ( -∞ (,] 𝑆 ) ) |
| 55 |
|
iocleub |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑆 ∈ ℝ* ∧ 𝑥 ∈ ( -∞ (,] 𝑆 ) ) → 𝑥 ≤ 𝑆 ) |
| 56 |
47 51 54 55
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑥 ≤ 𝑆 ) |
| 57 |
|
breq2 |
⊢ ( 𝑦 = 𝑆 → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝑆 ) ) |
| 58 |
|
fveq2 |
⊢ ( 𝑦 = 𝑆 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑆 ) ) |
| 59 |
58
|
breq1d |
⊢ ( 𝑦 = 𝑆 → ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑆 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 60 |
57 59
|
imbi12d |
⊢ ( 𝑦 = 𝑆 → ( ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑥 ≤ 𝑆 → ( 𝐹 ‘ 𝑆 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 61 |
60
|
rspcva |
⊢ ( ( 𝑆 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) → ( 𝑥 ≤ 𝑆 → ( 𝐹 ‘ 𝑆 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 62 |
45 56 61
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( 𝐹 ‘ 𝑆 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 63 |
18 21 23 41 62
|
xrltletrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑅 < ( 𝐹 ‘ 𝑥 ) ) |
| 64 |
17 63
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑅 < ( 𝐹 ‘ 𝑥 ) ) ) |
| 65 |
6
|
reqabi |
⊢ ( 𝑥 ∈ 𝑌 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑅 < ( 𝐹 ‘ 𝑥 ) ) ) |
| 66 |
64 65
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑥 ∈ 𝑌 ) |
| 67 |
66
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) → 𝑥 ∈ 𝑌 ) ) |
| 68 |
1 67
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) 𝑥 ∈ 𝑌 ) |
| 69 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ∈ ( 𝐼 ∩ 𝐴 ) |
| 70 |
69
|
nfci |
⊢ Ⅎ 𝑥 ( 𝐼 ∩ 𝐴 ) |
| 71 |
70 26
|
dfss3f |
⊢ ( ( 𝐼 ∩ 𝐴 ) ⊆ 𝑌 ↔ ∀ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) 𝑥 ∈ 𝑌 ) |
| 72 |
68 71
|
sylibr |
⊢ ( 𝜑 → ( 𝐼 ∩ 𝐴 ) ⊆ 𝑌 ) |
| 73 |
15 72
|
eqssd |
⊢ ( 𝜑 → 𝑌 = ( 𝐼 ∩ 𝐴 ) ) |