Step |
Hyp |
Ref |
Expression |
1 |
|
pimdecfgtioc.x |
|
2 |
|
pimdecfgtioc.a |
|
3 |
|
pimdecfgtioc.f |
|
4 |
|
pimdecfgtioc.i |
|
5 |
|
pimdecfgtioc.r |
|
6 |
|
pimdecfgtioc.y |
|
7 |
|
pimdecfgtioc.c |
|
8 |
|
pimdecfgtioc.e |
|
9 |
|
pimdecfgtioc.d |
|
10 |
|
ssrab2 |
|
11 |
6 10
|
eqsstri |
|
12 |
11
|
a1i |
|
13 |
12 2
|
sstrd |
|
14 |
13 7 8 9
|
ressiocsup |
|
15 |
14 12
|
ssind |
|
16 |
|
elinel2 |
|
17 |
16
|
adantl |
|
18 |
5
|
adantr |
|
19 |
11 8
|
sselid |
|
20 |
3 19
|
ffvelrnd |
|
21 |
20
|
adantr |
|
22 |
3
|
adantr |
|
23 |
22 17
|
ffvelrnd |
|
24 |
8 6
|
eleqtrdi |
|
25 |
|
nfrab1 |
|
26 |
6 25
|
nfcxfr |
|
27 |
|
nfcv |
|
28 |
|
nfcv |
|
29 |
26 27 28
|
nfsup |
|
30 |
7 29
|
nfcxfr |
|
31 |
|
nfcv |
|
32 |
|
nfcv |
|
33 |
|
nfcv |
|
34 |
33 30
|
nffv |
|
35 |
32 28 34
|
nfbr |
|
36 |
|
fveq2 |
|
37 |
36
|
breq2d |
|
38 |
30 31 35 37
|
elrabf |
|
39 |
24 38
|
sylib |
|
40 |
39
|
simprd |
|
41 |
40
|
adantr |
|
42 |
19
|
adantr |
|
43 |
4
|
r19.21bi |
|
44 |
17 43
|
syldan |
|
45 |
42 44
|
jca |
|
46 |
|
mnfxr |
|
47 |
46
|
a1i |
|
48 |
|
ressxr |
|
49 |
13 8
|
sseldd |
|
50 |
48 49
|
sselid |
|
51 |
50
|
adantr |
|
52 |
|
elinel1 |
|
53 |
52 9
|
eleqtrdi |
|
54 |
53
|
adantl |
|
55 |
|
iocleub |
|
56 |
47 51 54 55
|
syl3anc |
|
57 |
|
breq2 |
|
58 |
|
fveq2 |
|
59 |
58
|
breq1d |
|
60 |
57 59
|
imbi12d |
|
61 |
60
|
rspcva |
|
62 |
45 56 61
|
sylc |
|
63 |
18 21 23 41 62
|
xrltletrd |
|
64 |
17 63
|
jca |
|
65 |
6
|
rabeq2i |
|
66 |
64 65
|
sylibr |
|
67 |
66
|
ex |
|
68 |
1 67
|
ralrimi |
|
69 |
|
nfv |
|
70 |
69
|
nfci |
|
71 |
70 26
|
dfss3f |
|
72 |
68 71
|
sylibr |
|
73 |
15 72
|
eqssd |
|