| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pimdecfgtioc.x |  |-  F/ x ph | 
						
							| 2 |  | pimdecfgtioc.a |  |-  ( ph -> A C_ RR ) | 
						
							| 3 |  | pimdecfgtioc.f |  |-  ( ph -> F : A --> RR* ) | 
						
							| 4 |  | pimdecfgtioc.i |  |-  ( ph -> A. x e. A A. y e. A ( x <_ y -> ( F ` y ) <_ ( F ` x ) ) ) | 
						
							| 5 |  | pimdecfgtioc.r |  |-  ( ph -> R e. RR* ) | 
						
							| 6 |  | pimdecfgtioc.y |  |-  Y = { x e. A | R < ( F ` x ) } | 
						
							| 7 |  | pimdecfgtioc.c |  |-  S = sup ( Y , RR* , < ) | 
						
							| 8 |  | pimdecfgtioc.e |  |-  ( ph -> S e. Y ) | 
						
							| 9 |  | pimdecfgtioc.d |  |-  I = ( -oo (,] S ) | 
						
							| 10 |  | ssrab2 |  |-  { x e. A | R < ( F ` x ) } C_ A | 
						
							| 11 | 6 10 | eqsstri |  |-  Y C_ A | 
						
							| 12 | 11 | a1i |  |-  ( ph -> Y C_ A ) | 
						
							| 13 | 12 2 | sstrd |  |-  ( ph -> Y C_ RR ) | 
						
							| 14 | 13 7 8 9 | ressiocsup |  |-  ( ph -> Y C_ I ) | 
						
							| 15 | 14 12 | ssind |  |-  ( ph -> Y C_ ( I i^i A ) ) | 
						
							| 16 |  | elinel2 |  |-  ( x e. ( I i^i A ) -> x e. A ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ph /\ x e. ( I i^i A ) ) -> x e. A ) | 
						
							| 18 | 5 | adantr |  |-  ( ( ph /\ x e. ( I i^i A ) ) -> R e. RR* ) | 
						
							| 19 | 11 8 | sselid |  |-  ( ph -> S e. A ) | 
						
							| 20 | 3 19 | ffvelcdmd |  |-  ( ph -> ( F ` S ) e. RR* ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ph /\ x e. ( I i^i A ) ) -> ( F ` S ) e. RR* ) | 
						
							| 22 | 3 | adantr |  |-  ( ( ph /\ x e. ( I i^i A ) ) -> F : A --> RR* ) | 
						
							| 23 | 22 17 | ffvelcdmd |  |-  ( ( ph /\ x e. ( I i^i A ) ) -> ( F ` x ) e. RR* ) | 
						
							| 24 | 8 6 | eleqtrdi |  |-  ( ph -> S e. { x e. A | R < ( F ` x ) } ) | 
						
							| 25 |  | nfrab1 |  |-  F/_ x { x e. A | R < ( F ` x ) } | 
						
							| 26 | 6 25 | nfcxfr |  |-  F/_ x Y | 
						
							| 27 |  | nfcv |  |-  F/_ x RR* | 
						
							| 28 |  | nfcv |  |-  F/_ x < | 
						
							| 29 | 26 27 28 | nfsup |  |-  F/_ x sup ( Y , RR* , < ) | 
						
							| 30 | 7 29 | nfcxfr |  |-  F/_ x S | 
						
							| 31 |  | nfcv |  |-  F/_ x A | 
						
							| 32 |  | nfcv |  |-  F/_ x R | 
						
							| 33 |  | nfcv |  |-  F/_ x F | 
						
							| 34 | 33 30 | nffv |  |-  F/_ x ( F ` S ) | 
						
							| 35 | 32 28 34 | nfbr |  |-  F/ x R < ( F ` S ) | 
						
							| 36 |  | fveq2 |  |-  ( x = S -> ( F ` x ) = ( F ` S ) ) | 
						
							| 37 | 36 | breq2d |  |-  ( x = S -> ( R < ( F ` x ) <-> R < ( F ` S ) ) ) | 
						
							| 38 | 30 31 35 37 | elrabf |  |-  ( S e. { x e. A | R < ( F ` x ) } <-> ( S e. A /\ R < ( F ` S ) ) ) | 
						
							| 39 | 24 38 | sylib |  |-  ( ph -> ( S e. A /\ R < ( F ` S ) ) ) | 
						
							| 40 | 39 | simprd |  |-  ( ph -> R < ( F ` S ) ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ph /\ x e. ( I i^i A ) ) -> R < ( F ` S ) ) | 
						
							| 42 | 19 | adantr |  |-  ( ( ph /\ x e. ( I i^i A ) ) -> S e. A ) | 
						
							| 43 | 4 | r19.21bi |  |-  ( ( ph /\ x e. A ) -> A. y e. A ( x <_ y -> ( F ` y ) <_ ( F ` x ) ) ) | 
						
							| 44 | 17 43 | syldan |  |-  ( ( ph /\ x e. ( I i^i A ) ) -> A. y e. A ( x <_ y -> ( F ` y ) <_ ( F ` x ) ) ) | 
						
							| 45 | 42 44 | jca |  |-  ( ( ph /\ x e. ( I i^i A ) ) -> ( S e. A /\ A. y e. A ( x <_ y -> ( F ` y ) <_ ( F ` x ) ) ) ) | 
						
							| 46 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 47 | 46 | a1i |  |-  ( ( ph /\ x e. ( I i^i A ) ) -> -oo e. RR* ) | 
						
							| 48 |  | ressxr |  |-  RR C_ RR* | 
						
							| 49 | 13 8 | sseldd |  |-  ( ph -> S e. RR ) | 
						
							| 50 | 48 49 | sselid |  |-  ( ph -> S e. RR* ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ph /\ x e. ( I i^i A ) ) -> S e. RR* ) | 
						
							| 52 |  | elinel1 |  |-  ( x e. ( I i^i A ) -> x e. I ) | 
						
							| 53 | 52 9 | eleqtrdi |  |-  ( x e. ( I i^i A ) -> x e. ( -oo (,] S ) ) | 
						
							| 54 | 53 | adantl |  |-  ( ( ph /\ x e. ( I i^i A ) ) -> x e. ( -oo (,] S ) ) | 
						
							| 55 |  | iocleub |  |-  ( ( -oo e. RR* /\ S e. RR* /\ x e. ( -oo (,] S ) ) -> x <_ S ) | 
						
							| 56 | 47 51 54 55 | syl3anc |  |-  ( ( ph /\ x e. ( I i^i A ) ) -> x <_ S ) | 
						
							| 57 |  | breq2 |  |-  ( y = S -> ( x <_ y <-> x <_ S ) ) | 
						
							| 58 |  | fveq2 |  |-  ( y = S -> ( F ` y ) = ( F ` S ) ) | 
						
							| 59 | 58 | breq1d |  |-  ( y = S -> ( ( F ` y ) <_ ( F ` x ) <-> ( F ` S ) <_ ( F ` x ) ) ) | 
						
							| 60 | 57 59 | imbi12d |  |-  ( y = S -> ( ( x <_ y -> ( F ` y ) <_ ( F ` x ) ) <-> ( x <_ S -> ( F ` S ) <_ ( F ` x ) ) ) ) | 
						
							| 61 | 60 | rspcva |  |-  ( ( S e. A /\ A. y e. A ( x <_ y -> ( F ` y ) <_ ( F ` x ) ) ) -> ( x <_ S -> ( F ` S ) <_ ( F ` x ) ) ) | 
						
							| 62 | 45 56 61 | sylc |  |-  ( ( ph /\ x e. ( I i^i A ) ) -> ( F ` S ) <_ ( F ` x ) ) | 
						
							| 63 | 18 21 23 41 62 | xrltletrd |  |-  ( ( ph /\ x e. ( I i^i A ) ) -> R < ( F ` x ) ) | 
						
							| 64 | 17 63 | jca |  |-  ( ( ph /\ x e. ( I i^i A ) ) -> ( x e. A /\ R < ( F ` x ) ) ) | 
						
							| 65 | 6 | reqabi |  |-  ( x e. Y <-> ( x e. A /\ R < ( F ` x ) ) ) | 
						
							| 66 | 64 65 | sylibr |  |-  ( ( ph /\ x e. ( I i^i A ) ) -> x e. Y ) | 
						
							| 67 | 66 | ex |  |-  ( ph -> ( x e. ( I i^i A ) -> x e. Y ) ) | 
						
							| 68 | 1 67 | ralrimi |  |-  ( ph -> A. x e. ( I i^i A ) x e. Y ) | 
						
							| 69 |  | nfv |  |-  F/ x z e. ( I i^i A ) | 
						
							| 70 | 69 | nfci |  |-  F/_ x ( I i^i A ) | 
						
							| 71 | 70 26 | dfss3f |  |-  ( ( I i^i A ) C_ Y <-> A. x e. ( I i^i A ) x e. Y ) | 
						
							| 72 | 68 71 | sylibr |  |-  ( ph -> ( I i^i A ) C_ Y ) | 
						
							| 73 | 15 72 | eqssd |  |-  ( ph -> Y = ( I i^i A ) ) |