Step |
Hyp |
Ref |
Expression |
1 |
|
pimincfltioc.x |
|- F/ x ph |
2 |
|
pimincfltioc.h |
|- F/ y ph |
3 |
|
pimincfltioc.a |
|- ( ph -> A C_ RR ) |
4 |
|
pimincfltioc.f |
|- ( ph -> F : A --> RR* ) |
5 |
|
pimincfltioc.i |
|- ( ph -> A. x e. A A. y e. A ( x <_ y -> ( F ` x ) <_ ( F ` y ) ) ) |
6 |
|
pimincfltioc.r |
|- ( ph -> R e. RR* ) |
7 |
|
pimincfltioc.y |
|- Y = { x e. A | ( F ` x ) < R } |
8 |
|
pimincfltioc.c |
|- S = sup ( Y , RR* , < ) |
9 |
|
pimincfltioc.e |
|- ( ph -> S e. Y ) |
10 |
|
pimincfltioc.d |
|- I = ( -oo (,] S ) |
11 |
|
ssrab2 |
|- { x e. A | ( F ` x ) < R } C_ A |
12 |
7 11
|
eqsstri |
|- Y C_ A |
13 |
12
|
a1i |
|- ( ph -> Y C_ A ) |
14 |
13 3
|
sstrd |
|- ( ph -> Y C_ RR ) |
15 |
14 8 9 10
|
ressiocsup |
|- ( ph -> Y C_ I ) |
16 |
15 13
|
ssind |
|- ( ph -> Y C_ ( I i^i A ) ) |
17 |
|
elinel2 |
|- ( x e. ( I i^i A ) -> x e. A ) |
18 |
17
|
adantl |
|- ( ( ph /\ x e. ( I i^i A ) ) -> x e. A ) |
19 |
4
|
adantr |
|- ( ( ph /\ x e. ( I i^i A ) ) -> F : A --> RR* ) |
20 |
19 18
|
ffvelrnd |
|- ( ( ph /\ x e. ( I i^i A ) ) -> ( F ` x ) e. RR* ) |
21 |
12 9
|
sseldi |
|- ( ph -> S e. A ) |
22 |
4 21
|
ffvelrnd |
|- ( ph -> ( F ` S ) e. RR* ) |
23 |
22
|
adantr |
|- ( ( ph /\ x e. ( I i^i A ) ) -> ( F ` S ) e. RR* ) |
24 |
6
|
adantr |
|- ( ( ph /\ x e. ( I i^i A ) ) -> R e. RR* ) |
25 |
|
eleq1w |
|- ( z = x -> ( z e. ( I i^i A ) <-> x e. ( I i^i A ) ) ) |
26 |
25
|
anbi2d |
|- ( z = x -> ( ( ph /\ z e. ( I i^i A ) ) <-> ( ph /\ x e. ( I i^i A ) ) ) ) |
27 |
|
fveq2 |
|- ( z = x -> ( F ` z ) = ( F ` x ) ) |
28 |
27
|
breq1d |
|- ( z = x -> ( ( F ` z ) <_ ( F ` S ) <-> ( F ` x ) <_ ( F ` S ) ) ) |
29 |
26 28
|
imbi12d |
|- ( z = x -> ( ( ( ph /\ z e. ( I i^i A ) ) -> ( F ` z ) <_ ( F ` S ) ) <-> ( ( ph /\ x e. ( I i^i A ) ) -> ( F ` x ) <_ ( F ` S ) ) ) ) |
30 |
|
nfv |
|- F/ x z e. ( I i^i A ) |
31 |
1 30
|
nfan |
|- F/ x ( ph /\ z e. ( I i^i A ) ) |
32 |
|
nfv |
|- F/ y z e. ( I i^i A ) |
33 |
2 32
|
nfan |
|- F/ y ( ph /\ z e. ( I i^i A ) ) |
34 |
5
|
adantr |
|- ( ( ph /\ z e. ( I i^i A ) ) -> A. x e. A A. y e. A ( x <_ y -> ( F ` x ) <_ ( F ` y ) ) ) |
35 |
|
elinel2 |
|- ( z e. ( I i^i A ) -> z e. A ) |
36 |
35
|
adantl |
|- ( ( ph /\ z e. ( I i^i A ) ) -> z e. A ) |
37 |
21
|
adantr |
|- ( ( ph /\ z e. ( I i^i A ) ) -> S e. A ) |
38 |
|
mnfxr |
|- -oo e. RR* |
39 |
38
|
a1i |
|- ( ( ph /\ z e. ( I i^i A ) ) -> -oo e. RR* ) |
40 |
|
ressxr |
|- RR C_ RR* |
41 |
14 9
|
sseldd |
|- ( ph -> S e. RR ) |
42 |
40 41
|
sseldi |
|- ( ph -> S e. RR* ) |
43 |
42
|
adantr |
|- ( ( ph /\ z e. ( I i^i A ) ) -> S e. RR* ) |
44 |
|
elinel1 |
|- ( z e. ( I i^i A ) -> z e. I ) |
45 |
44 10
|
eleqtrdi |
|- ( z e. ( I i^i A ) -> z e. ( -oo (,] S ) ) |
46 |
45
|
adantl |
|- ( ( ph /\ z e. ( I i^i A ) ) -> z e. ( -oo (,] S ) ) |
47 |
|
iocleub |
|- ( ( -oo e. RR* /\ S e. RR* /\ z e. ( -oo (,] S ) ) -> z <_ S ) |
48 |
39 43 46 47
|
syl3anc |
|- ( ( ph /\ z e. ( I i^i A ) ) -> z <_ S ) |
49 |
31 33 34 36 37 48
|
dmrelrnrel |
|- ( ( ph /\ z e. ( I i^i A ) ) -> ( F ` z ) <_ ( F ` S ) ) |
50 |
29 49
|
chvarvv |
|- ( ( ph /\ x e. ( I i^i A ) ) -> ( F ` x ) <_ ( F ` S ) ) |
51 |
|
fveq2 |
|- ( x = S -> ( F ` x ) = ( F ` S ) ) |
52 |
51
|
breq1d |
|- ( x = S -> ( ( F ` x ) < R <-> ( F ` S ) < R ) ) |
53 |
52 7
|
elrab2 |
|- ( S e. Y <-> ( S e. A /\ ( F ` S ) < R ) ) |
54 |
9 53
|
sylib |
|- ( ph -> ( S e. A /\ ( F ` S ) < R ) ) |
55 |
54
|
simprd |
|- ( ph -> ( F ` S ) < R ) |
56 |
55
|
adantr |
|- ( ( ph /\ x e. ( I i^i A ) ) -> ( F ` S ) < R ) |
57 |
20 23 24 50 56
|
xrlelttrd |
|- ( ( ph /\ x e. ( I i^i A ) ) -> ( F ` x ) < R ) |
58 |
18 57
|
jca |
|- ( ( ph /\ x e. ( I i^i A ) ) -> ( x e. A /\ ( F ` x ) < R ) ) |
59 |
7
|
rabeq2i |
|- ( x e. Y <-> ( x e. A /\ ( F ` x ) < R ) ) |
60 |
58 59
|
sylibr |
|- ( ( ph /\ x e. ( I i^i A ) ) -> x e. Y ) |
61 |
60
|
ex |
|- ( ph -> ( x e. ( I i^i A ) -> x e. Y ) ) |
62 |
1 61
|
ralrimi |
|- ( ph -> A. x e. ( I i^i A ) x e. Y ) |
63 |
30
|
nfci |
|- F/_ x ( I i^i A ) |
64 |
|
nfrab1 |
|- F/_ x { x e. A | ( F ` x ) < R } |
65 |
7 64
|
nfcxfr |
|- F/_ x Y |
66 |
63 65
|
dfss3f |
|- ( ( I i^i A ) C_ Y <-> A. x e. ( I i^i A ) x e. Y ) |
67 |
62 66
|
sylibr |
|- ( ph -> ( I i^i A ) C_ Y ) |
68 |
16 67
|
eqssd |
|- ( ph -> Y = ( I i^i A ) ) |