Step |
Hyp |
Ref |
Expression |
1 |
|
pimincfltioc.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
pimincfltioc.h |
⊢ Ⅎ 𝑦 𝜑 |
3 |
|
pimincfltioc.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
4 |
|
pimincfltioc.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |
5 |
|
pimincfltioc.i |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
6 |
|
pimincfltioc.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
7 |
|
pimincfltioc.y |
⊢ 𝑌 = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑅 } |
8 |
|
pimincfltioc.c |
⊢ 𝑆 = sup ( 𝑌 , ℝ* , < ) |
9 |
|
pimincfltioc.e |
⊢ ( 𝜑 → 𝑆 ∈ 𝑌 ) |
10 |
|
pimincfltioc.d |
⊢ 𝐼 = ( -∞ (,] 𝑆 ) |
11 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑅 } ⊆ 𝐴 |
12 |
7 11
|
eqsstri |
⊢ 𝑌 ⊆ 𝐴 |
13 |
12
|
a1i |
⊢ ( 𝜑 → 𝑌 ⊆ 𝐴 ) |
14 |
13 3
|
sstrd |
⊢ ( 𝜑 → 𝑌 ⊆ ℝ ) |
15 |
14 8 9 10
|
ressiocsup |
⊢ ( 𝜑 → 𝑌 ⊆ 𝐼 ) |
16 |
15 13
|
ssind |
⊢ ( 𝜑 → 𝑌 ⊆ ( 𝐼 ∩ 𝐴 ) ) |
17 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) |
19 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ ℝ* ) |
20 |
19 18
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
21 |
12 9
|
sselid |
⊢ ( 𝜑 → 𝑆 ∈ 𝐴 ) |
22 |
4 21
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑆 ) ∈ ℝ* ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( 𝐹 ‘ 𝑆 ) ∈ ℝ* ) |
24 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑅 ∈ ℝ* ) |
25 |
|
eleq1w |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ ( 𝐼 ∩ 𝐴 ) ↔ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ) |
26 |
25
|
anbi2d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 ∩ 𝐴 ) ) ↔ ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ) ) |
27 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) |
28 |
27
|
breq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑆 ) ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑆 ) ) ) |
29 |
26 28
|
imbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑆 ) ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑆 ) ) ) ) |
30 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ∈ ( 𝐼 ∩ 𝐴 ) |
31 |
1 30
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 ∩ 𝐴 ) ) |
32 |
|
nfv |
⊢ Ⅎ 𝑦 𝑧 ∈ ( 𝐼 ∩ 𝐴 ) |
33 |
2 32
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 ∩ 𝐴 ) ) |
34 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 ∩ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
35 |
|
elinel2 |
⊢ ( 𝑧 ∈ ( 𝐼 ∩ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑧 ∈ 𝐴 ) |
37 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑆 ∈ 𝐴 ) |
38 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
39 |
38
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 ∩ 𝐴 ) ) → -∞ ∈ ℝ* ) |
40 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
41 |
14 9
|
sseldd |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
42 |
40 41
|
sselid |
⊢ ( 𝜑 → 𝑆 ∈ ℝ* ) |
43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑆 ∈ ℝ* ) |
44 |
|
elinel1 |
⊢ ( 𝑧 ∈ ( 𝐼 ∩ 𝐴 ) → 𝑧 ∈ 𝐼 ) |
45 |
44 10
|
eleqtrdi |
⊢ ( 𝑧 ∈ ( 𝐼 ∩ 𝐴 ) → 𝑧 ∈ ( -∞ (,] 𝑆 ) ) |
46 |
45
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑧 ∈ ( -∞ (,] 𝑆 ) ) |
47 |
|
iocleub |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑆 ∈ ℝ* ∧ 𝑧 ∈ ( -∞ (,] 𝑆 ) ) → 𝑧 ≤ 𝑆 ) |
48 |
39 43 46 47
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑧 ≤ 𝑆 ) |
49 |
31 33 34 36 37 48
|
dmrelrnrel |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑆 ) ) |
50 |
29 49
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑆 ) ) |
51 |
|
fveq2 |
⊢ ( 𝑥 = 𝑆 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑆 ) ) |
52 |
51
|
breq1d |
⊢ ( 𝑥 = 𝑆 → ( ( 𝐹 ‘ 𝑥 ) < 𝑅 ↔ ( 𝐹 ‘ 𝑆 ) < 𝑅 ) ) |
53 |
52 7
|
elrab2 |
⊢ ( 𝑆 ∈ 𝑌 ↔ ( 𝑆 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑆 ) < 𝑅 ) ) |
54 |
9 53
|
sylib |
⊢ ( 𝜑 → ( 𝑆 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑆 ) < 𝑅 ) ) |
55 |
54
|
simprd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑆 ) < 𝑅 ) |
56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( 𝐹 ‘ 𝑆 ) < 𝑅 ) |
57 |
20 23 24 50 56
|
xrlelttrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) < 𝑅 ) |
58 |
18 57
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) < 𝑅 ) ) |
59 |
7
|
rabeq2i |
⊢ ( 𝑥 ∈ 𝑌 ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) < 𝑅 ) ) |
60 |
58 59
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑥 ∈ 𝑌 ) |
61 |
60
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) → 𝑥 ∈ 𝑌 ) ) |
62 |
1 61
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) 𝑥 ∈ 𝑌 ) |
63 |
30
|
nfci |
⊢ Ⅎ 𝑥 ( 𝐼 ∩ 𝐴 ) |
64 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑅 } |
65 |
7 64
|
nfcxfr |
⊢ Ⅎ 𝑥 𝑌 |
66 |
63 65
|
dfss3f |
⊢ ( ( 𝐼 ∩ 𝐴 ) ⊆ 𝑌 ↔ ∀ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) 𝑥 ∈ 𝑌 ) |
67 |
62 66
|
sylibr |
⊢ ( 𝜑 → ( 𝐼 ∩ 𝐴 ) ⊆ 𝑌 ) |
68 |
16 67
|
eqssd |
⊢ ( 𝜑 → 𝑌 = ( 𝐼 ∩ 𝐴 ) ) |