| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pimdecfgtioo.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
pimdecfgtioo.h |
⊢ Ⅎ 𝑦 𝜑 |
| 3 |
|
pimdecfgtioo.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 4 |
|
pimdecfgtioo.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |
| 5 |
|
pimdecfgtioo.d |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 6 |
|
pimdecfgtioo.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
| 7 |
|
pimdecfgtioo.y |
⊢ 𝑌 = { 𝑥 ∈ 𝐴 ∣ 𝑅 < ( 𝐹 ‘ 𝑥 ) } |
| 8 |
|
pimdecfgtioo.c |
⊢ 𝑆 = sup ( 𝑌 , ℝ* , < ) |
| 9 |
|
pimdecfgtioo.e |
⊢ ( 𝜑 → ¬ 𝑆 ∈ 𝑌 ) |
| 10 |
|
pimdecfgtioo.i |
⊢ 𝐼 = ( -∞ (,) 𝑆 ) |
| 11 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝑅 < ( 𝐹 ‘ 𝑥 ) } ⊆ 𝐴 |
| 12 |
7 11
|
eqsstri |
⊢ 𝑌 ⊆ 𝐴 |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → 𝑌 ⊆ 𝐴 ) |
| 14 |
13 3
|
sstrd |
⊢ ( 𝜑 → 𝑌 ⊆ ℝ ) |
| 15 |
14 8 9 10
|
ressioosup |
⊢ ( 𝜑 → 𝑌 ⊆ 𝐼 ) |
| 16 |
15 13
|
ssind |
⊢ ( 𝜑 → 𝑌 ⊆ ( 𝐼 ∩ 𝐴 ) ) |
| 17 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) |
| 19 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 20 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → -∞ ∈ ℝ* ) |
| 21 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 22 |
14 21
|
sstrdi |
⊢ ( 𝜑 → 𝑌 ⊆ ℝ* ) |
| 23 |
22
|
supxrcld |
⊢ ( 𝜑 → sup ( 𝑌 , ℝ* , < ) ∈ ℝ* ) |
| 24 |
8 23
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ ℝ* ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑆 ∈ ℝ* ) |
| 26 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) → 𝑥 ∈ 𝐼 ) |
| 27 |
26 10
|
eleqtrdi |
⊢ ( 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) → 𝑥 ∈ ( -∞ (,) 𝑆 ) ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑥 ∈ ( -∞ (,) 𝑆 ) ) |
| 29 |
|
iooltub |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑆 ∈ ℝ* ∧ 𝑥 ∈ ( -∞ (,) 𝑆 ) ) → 𝑥 < 𝑆 ) |
| 30 |
20 25 28 29
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑥 < 𝑆 ) |
| 31 |
30
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ 𝑅 < ( 𝐹 ‘ 𝑥 ) ) → 𝑥 < 𝑆 ) |
| 32 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ 𝑅 < ( 𝐹 ‘ 𝑥 ) ) → ¬ 𝑅 < ( 𝐹 ‘ 𝑥 ) ) |
| 33 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ ℝ* ) |
| 34 |
33 18
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
| 35 |
34
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ 𝑅 < ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
| 36 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑅 ∈ ℝ* ) |
| 37 |
36
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ 𝑅 < ( 𝐹 ‘ 𝑥 ) ) → 𝑅 ∈ ℝ* ) |
| 38 |
35 37
|
xrlenltd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ 𝑅 < ( 𝐹 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑅 ↔ ¬ 𝑅 < ( 𝐹 ‘ 𝑥 ) ) ) |
| 39 |
32 38
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ 𝑅 < ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ 𝑅 ) |
| 40 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) |
| 41 |
2 40
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) |
| 42 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑥 ) ≤ 𝑅 |
| 43 |
41 42
|
nfan |
⊢ Ⅎ 𝑦 ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑅 ) |
| 44 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 45 |
44
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑅 < ( 𝐹 ‘ 𝑥 ) ↔ 𝑅 < ( 𝐹 ‘ 𝑦 ) ) ) |
| 46 |
45 7
|
elrab2 |
⊢ ( 𝑦 ∈ 𝑌 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑅 < ( 𝐹 ‘ 𝑦 ) ) ) |
| 47 |
46
|
biimpi |
⊢ ( 𝑦 ∈ 𝑌 → ( 𝑦 ∈ 𝐴 ∧ 𝑅 < ( 𝐹 ‘ 𝑦 ) ) ) |
| 48 |
47
|
simprd |
⊢ ( 𝑦 ∈ 𝑌 → 𝑅 < ( 𝐹 ‘ 𝑦 ) ) |
| 49 |
48
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑅 ) ∧ 𝑦 ∈ 𝑌 ) ∧ ¬ 𝑦 ≤ 𝑥 ) → 𝑅 < ( 𝐹 ‘ 𝑦 ) ) |
| 50 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝐴 ⊆ ℝ ) |
| 51 |
50 18
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑥 ∈ ℝ ) |
| 52 |
51
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ¬ 𝑦 ≤ 𝑥 ) → 𝑥 ∈ ℝ ) |
| 53 |
14
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ ℝ ) |
| 54 |
53
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ¬ 𝑦 ≤ 𝑥 ) → 𝑦 ∈ ℝ ) |
| 55 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ¬ 𝑦 ≤ 𝑥 ) → ¬ 𝑦 ≤ 𝑥 ) |
| 56 |
52 54
|
ltnled |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ¬ 𝑦 ≤ 𝑥 ) → ( 𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥 ) ) |
| 57 |
55 56
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ¬ 𝑦 ≤ 𝑥 ) → 𝑥 < 𝑦 ) |
| 58 |
52 54 57
|
ltled |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ¬ 𝑦 ≤ 𝑥 ) → 𝑥 ≤ 𝑦 ) |
| 59 |
58
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑅 ) ∧ 𝑦 ∈ 𝑌 ) ∧ ¬ 𝑦 ≤ 𝑥 ) → 𝑥 ≤ 𝑦 ) |
| 60 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝐹 : 𝐴 ⟶ ℝ* ) |
| 61 |
13
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝐴 ) |
| 62 |
60 61
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ) |
| 63 |
62
|
ad5ant14 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑅 ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ) |
| 64 |
34
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑅 ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
| 65 |
36
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑅 ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → 𝑅 ∈ ℝ* ) |
| 66 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → 𝑥 ≤ 𝑦 ) |
| 67 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 68 |
5 17 67
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 69 |
68
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 70 |
61
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → 𝑦 ∈ 𝐴 ) |
| 71 |
|
rspa |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 72 |
69 70 71
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 73 |
66 72
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 74 |
73
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑅 ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 75 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑅 ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ≤ 𝑅 ) |
| 76 |
63 64 65 74 75
|
xrletrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑅 ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → ( 𝐹 ‘ 𝑦 ) ≤ 𝑅 ) |
| 77 |
63 65
|
xrlenltd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑅 ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑅 ↔ ¬ 𝑅 < ( 𝐹 ‘ 𝑦 ) ) ) |
| 78 |
76 77
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑅 ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → ¬ 𝑅 < ( 𝐹 ‘ 𝑦 ) ) |
| 79 |
59 78
|
syldan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑅 ) ∧ 𝑦 ∈ 𝑌 ) ∧ ¬ 𝑦 ≤ 𝑥 ) → ¬ 𝑅 < ( 𝐹 ‘ 𝑦 ) ) |
| 80 |
49 79
|
condan |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑅 ) ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ≤ 𝑥 ) |
| 81 |
80
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑅 ) → ( 𝑦 ∈ 𝑌 → 𝑦 ≤ 𝑥 ) ) |
| 82 |
43 81
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ≤ 𝑅 ) → ∀ 𝑦 ∈ 𝑌 𝑦 ≤ 𝑥 ) |
| 83 |
39 82
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ 𝑅 < ( 𝐹 ‘ 𝑥 ) ) → ∀ 𝑦 ∈ 𝑌 𝑦 ≤ 𝑥 ) |
| 84 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑌 ⊆ ℝ* ) |
| 85 |
21 51
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑥 ∈ ℝ* ) |
| 86 |
|
supxrleub |
⊢ ( ( 𝑌 ⊆ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( sup ( 𝑌 , ℝ* , < ) ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝑌 𝑦 ≤ 𝑥 ) ) |
| 87 |
84 85 86
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( sup ( 𝑌 , ℝ* , < ) ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝑌 𝑦 ≤ 𝑥 ) ) |
| 88 |
87
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ 𝑅 < ( 𝐹 ‘ 𝑥 ) ) → ( sup ( 𝑌 , ℝ* , < ) ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝑌 𝑦 ≤ 𝑥 ) ) |
| 89 |
83 88
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ 𝑅 < ( 𝐹 ‘ 𝑥 ) ) → sup ( 𝑌 , ℝ* , < ) ≤ 𝑥 ) |
| 90 |
8 89
|
eqbrtrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ 𝑅 < ( 𝐹 ‘ 𝑥 ) ) → 𝑆 ≤ 𝑥 ) |
| 91 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ 𝑅 < ( 𝐹 ‘ 𝑥 ) ) → 𝑆 ∈ ℝ* ) |
| 92 |
85
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ 𝑅 < ( 𝐹 ‘ 𝑥 ) ) → 𝑥 ∈ ℝ* ) |
| 93 |
91 92
|
xrlenltd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ 𝑅 < ( 𝐹 ‘ 𝑥 ) ) → ( 𝑆 ≤ 𝑥 ↔ ¬ 𝑥 < 𝑆 ) ) |
| 94 |
90 93
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ 𝑅 < ( 𝐹 ‘ 𝑥 ) ) → ¬ 𝑥 < 𝑆 ) |
| 95 |
31 94
|
condan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑅 < ( 𝐹 ‘ 𝑥 ) ) |
| 96 |
18 95
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑅 < ( 𝐹 ‘ 𝑥 ) ) ) |
| 97 |
7
|
reqabi |
⊢ ( 𝑥 ∈ 𝑌 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑅 < ( 𝐹 ‘ 𝑥 ) ) ) |
| 98 |
96 97
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑥 ∈ 𝑌 ) |
| 99 |
98
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) → 𝑥 ∈ 𝑌 ) ) |
| 100 |
1 99
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) 𝑥 ∈ 𝑌 ) |
| 101 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝐼 ∩ 𝐴 ) |
| 102 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ 𝑅 < ( 𝐹 ‘ 𝑥 ) } |
| 103 |
7 102
|
nfcxfr |
⊢ Ⅎ 𝑥 𝑌 |
| 104 |
101 103
|
dfss3f |
⊢ ( ( 𝐼 ∩ 𝐴 ) ⊆ 𝑌 ↔ ∀ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) 𝑥 ∈ 𝑌 ) |
| 105 |
100 104
|
sylibr |
⊢ ( 𝜑 → ( 𝐼 ∩ 𝐴 ) ⊆ 𝑌 ) |
| 106 |
16 105
|
eqssd |
⊢ ( 𝜑 → 𝑌 = ( 𝐼 ∩ 𝐴 ) ) |