Step |
Hyp |
Ref |
Expression |
1 |
|
pimincfltioo.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
pimincfltioo.h |
⊢ Ⅎ 𝑦 𝜑 |
3 |
|
pimincfltioo.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
4 |
|
pimincfltioo.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |
5 |
|
pimincfltioo.i |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
6 |
|
pimincfltioo.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
7 |
|
pimincfltioo.y |
⊢ 𝑌 = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑅 } |
8 |
|
pimincfltioo.c |
⊢ 𝑆 = sup ( 𝑌 , ℝ* , < ) |
9 |
|
pimincfltioo.e |
⊢ ( 𝜑 → ¬ 𝑆 ∈ 𝑌 ) |
10 |
|
pimincfltioo.d |
⊢ 𝐼 = ( -∞ (,) 𝑆 ) |
11 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑅 } ⊆ 𝐴 |
12 |
7 11
|
eqsstri |
⊢ 𝑌 ⊆ 𝐴 |
13 |
12
|
a1i |
⊢ ( 𝜑 → 𝑌 ⊆ 𝐴 ) |
14 |
13 3
|
sstrd |
⊢ ( 𝜑 → 𝑌 ⊆ ℝ ) |
15 |
14 8 9 10
|
ressioosup |
⊢ ( 𝜑 → 𝑌 ⊆ 𝐼 ) |
16 |
15 13
|
ssind |
⊢ ( 𝜑 → 𝑌 ⊆ ( 𝐼 ∩ 𝐴 ) ) |
17 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) |
19 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
20 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → -∞ ∈ ℝ* ) |
21 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
22 |
14 21
|
sstrdi |
⊢ ( 𝜑 → 𝑌 ⊆ ℝ* ) |
23 |
22
|
supxrcld |
⊢ ( 𝜑 → sup ( 𝑌 , ℝ* , < ) ∈ ℝ* ) |
24 |
8 23
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ ℝ* ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑆 ∈ ℝ* ) |
26 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) → 𝑥 ∈ 𝐼 ) |
27 |
26 10
|
eleqtrdi |
⊢ ( 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) → 𝑥 ∈ ( -∞ (,) 𝑆 ) ) |
28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑥 ∈ ( -∞ (,) 𝑆 ) ) |
29 |
|
iooltub |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑆 ∈ ℝ* ∧ 𝑥 ∈ ( -∞ (,) 𝑆 ) ) → 𝑥 < 𝑆 ) |
30 |
20 25 28 29
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑥 < 𝑆 ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < 𝑅 ) → 𝑥 < 𝑆 ) |
32 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < 𝑅 ) → ¬ ( 𝐹 ‘ 𝑥 ) < 𝑅 ) |
33 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑅 ∈ ℝ* ) |
34 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < 𝑅 ) → 𝑅 ∈ ℝ* ) |
35 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ ℝ* ) |
36 |
35 18
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
37 |
36
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < 𝑅 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
38 |
34 37
|
xrlenltd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < 𝑅 ) → ( 𝑅 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ¬ ( 𝐹 ‘ 𝑥 ) < 𝑅 ) ) |
39 |
32 38
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < 𝑅 ) → 𝑅 ≤ ( 𝐹 ‘ 𝑥 ) ) |
40 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) |
41 |
2 40
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) |
42 |
|
nfv |
⊢ Ⅎ 𝑦 𝑅 ≤ ( 𝐹 ‘ 𝑥 ) |
43 |
41 42
|
nfan |
⊢ Ⅎ 𝑦 ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑅 ≤ ( 𝐹 ‘ 𝑥 ) ) |
44 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
45 |
44
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) < 𝑅 ↔ ( 𝐹 ‘ 𝑦 ) < 𝑅 ) ) |
46 |
45 7
|
elrab2 |
⊢ ( 𝑦 ∈ 𝑌 ↔ ( 𝑦 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑦 ) < 𝑅 ) ) |
47 |
46
|
biimpi |
⊢ ( 𝑦 ∈ 𝑌 → ( 𝑦 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑦 ) < 𝑅 ) ) |
48 |
47
|
simprd |
⊢ ( 𝑦 ∈ 𝑌 → ( 𝐹 ‘ 𝑦 ) < 𝑅 ) |
49 |
48
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐹 ‘ 𝑦 ) < 𝑅 ) |
50 |
49
|
ad5ant14 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑅 ≤ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ¬ 𝑦 ≤ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) < 𝑅 ) |
51 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝐴 ⊆ ℝ ) |
52 |
51 18
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑥 ∈ ℝ ) |
53 |
52
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑅 ≤ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ¬ 𝑦 ≤ 𝑥 ) → 𝑥 ∈ ℝ ) |
54 |
14
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ ℝ ) |
55 |
54
|
ad5ant14 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑅 ≤ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ¬ 𝑦 ≤ 𝑥 ) → 𝑦 ∈ ℝ ) |
56 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ¬ 𝑦 ≤ 𝑥 ) → ¬ 𝑦 ≤ 𝑥 ) |
57 |
52
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ¬ 𝑦 ≤ 𝑥 ) → 𝑥 ∈ ℝ ) |
58 |
54
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ¬ 𝑦 ≤ 𝑥 ) → 𝑦 ∈ ℝ ) |
59 |
57 58
|
ltnled |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ¬ 𝑦 ≤ 𝑥 ) → ( 𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥 ) ) |
60 |
56 59
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ¬ 𝑦 ≤ 𝑥 ) → 𝑥 < 𝑦 ) |
61 |
60
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑅 ≤ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ¬ 𝑦 ≤ 𝑥 ) → 𝑥 < 𝑦 ) |
62 |
53 55 61
|
ltled |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑅 ≤ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ¬ 𝑦 ≤ 𝑥 ) → 𝑥 ≤ 𝑦 ) |
63 |
33
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑅 ≤ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → 𝑅 ∈ ℝ* ) |
64 |
36
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑅 ≤ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
65 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝐹 : 𝐴 ⟶ ℝ* ) |
66 |
13
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝐴 ) |
67 |
65 66
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ) |
68 |
67
|
ad5ant14 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑅 ≤ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ) |
69 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑅 ≤ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → 𝑅 ≤ ( 𝐹 ‘ 𝑥 ) ) |
70 |
|
nfv |
⊢ Ⅎ 𝑤 ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) |
71 |
|
nfv |
⊢ Ⅎ 𝑧 ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) |
72 |
|
breq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ≤ 𝑧 ↔ 𝑥 ≤ 𝑧 ) ) |
73 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑥 ) ) |
74 |
73
|
breq1d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
75 |
72 74
|
imbi12d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ≤ 𝑧 → ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ↔ ( 𝑥 ≤ 𝑧 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) ) |
76 |
|
breq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 ≤ 𝑧 ↔ 𝑥 ≤ 𝑦 ) ) |
77 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) |
78 |
77
|
breq2d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
79 |
76 78
|
imbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑥 ≤ 𝑧 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ↔ ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
80 |
75 79
|
cbvral2vw |
⊢ ( ∀ 𝑤 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
81 |
5 80
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
82 |
81
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → ∀ 𝑤 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
83 |
18
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → 𝑥 ∈ 𝐴 ) |
84 |
66
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → 𝑦 ∈ 𝐴 ) |
85 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → 𝑥 ≤ 𝑦 ) |
86 |
70 71 82 83 84 85
|
dmrelrnrel |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
87 |
86
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑅 ≤ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
88 |
63 64 68 69 87
|
xrletrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑅 ≤ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → 𝑅 ≤ ( 𝐹 ‘ 𝑦 ) ) |
89 |
63 68
|
xrlenltd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑅 ≤ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → ( 𝑅 ≤ ( 𝐹 ‘ 𝑦 ) ↔ ¬ ( 𝐹 ‘ 𝑦 ) < 𝑅 ) ) |
90 |
88 89
|
mpbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑅 ≤ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ 𝑥 ≤ 𝑦 ) → ¬ ( 𝐹 ‘ 𝑦 ) < 𝑅 ) |
91 |
62 90
|
syldan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑅 ≤ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑌 ) ∧ ¬ 𝑦 ≤ 𝑥 ) → ¬ ( 𝐹 ‘ 𝑦 ) < 𝑅 ) |
92 |
50 91
|
condan |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑅 ≤ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ≤ 𝑥 ) |
93 |
92
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑅 ≤ ( 𝐹 ‘ 𝑥 ) ) → ( 𝑦 ∈ 𝑌 → 𝑦 ≤ 𝑥 ) ) |
94 |
43 93
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑅 ≤ ( 𝐹 ‘ 𝑥 ) ) → ∀ 𝑦 ∈ 𝑌 𝑦 ≤ 𝑥 ) |
95 |
39 94
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < 𝑅 ) → ∀ 𝑦 ∈ 𝑌 𝑦 ≤ 𝑥 ) |
96 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑌 ⊆ ℝ* ) |
97 |
21 52
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑥 ∈ ℝ* ) |
98 |
|
supxrleub |
⊢ ( ( 𝑌 ⊆ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( sup ( 𝑌 , ℝ* , < ) ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝑌 𝑦 ≤ 𝑥 ) ) |
99 |
96 97 98
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( sup ( 𝑌 , ℝ* , < ) ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝑌 𝑦 ≤ 𝑥 ) ) |
100 |
99
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < 𝑅 ) → ( sup ( 𝑌 , ℝ* , < ) ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝑌 𝑦 ≤ 𝑥 ) ) |
101 |
95 100
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < 𝑅 ) → sup ( 𝑌 , ℝ* , < ) ≤ 𝑥 ) |
102 |
8 101
|
eqbrtrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < 𝑅 ) → 𝑆 ≤ 𝑥 ) |
103 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < 𝑅 ) → 𝑆 ∈ ℝ* ) |
104 |
97
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < 𝑅 ) → 𝑥 ∈ ℝ* ) |
105 |
103 104
|
xrlenltd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < 𝑅 ) → ( 𝑆 ≤ 𝑥 ↔ ¬ 𝑥 < 𝑆 ) ) |
106 |
102 105
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ ¬ ( 𝐹 ‘ 𝑥 ) < 𝑅 ) → ¬ 𝑥 < 𝑆 ) |
107 |
31 106
|
condan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) < 𝑅 ) |
108 |
18 107
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) < 𝑅 ) ) |
109 |
7
|
rabeq2i |
⊢ ( 𝑥 ∈ 𝑌 ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) < 𝑅 ) ) |
110 |
108 109
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑥 ∈ 𝑌 ) |
111 |
110
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) → 𝑥 ∈ 𝑌 ) ) |
112 |
1 111
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) 𝑥 ∈ 𝑌 ) |
113 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝐼 ∩ 𝐴 ) |
114 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑅 } |
115 |
7 114
|
nfcxfr |
⊢ Ⅎ 𝑥 𝑌 |
116 |
113 115
|
dfss3f |
⊢ ( ( 𝐼 ∩ 𝐴 ) ⊆ 𝑌 ↔ ∀ 𝑥 ∈ ( 𝐼 ∩ 𝐴 ) 𝑥 ∈ 𝑌 ) |
117 |
112 116
|
sylibr |
⊢ ( 𝜑 → ( 𝐼 ∩ 𝐴 ) ⊆ 𝑌 ) |
118 |
16 117
|
eqssd |
⊢ ( 𝜑 → 𝑌 = ( 𝐼 ∩ 𝐴 ) ) |