| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pimincfltioo.x |
|
| 2 |
|
pimincfltioo.h |
|
| 3 |
|
pimincfltioo.a |
|
| 4 |
|
pimincfltioo.f |
|
| 5 |
|
pimincfltioo.i |
|
| 6 |
|
pimincfltioo.r |
|
| 7 |
|
pimincfltioo.y |
|
| 8 |
|
pimincfltioo.c |
|
| 9 |
|
pimincfltioo.e |
|
| 10 |
|
pimincfltioo.d |
|
| 11 |
|
ssrab2 |
|
| 12 |
7 11
|
eqsstri |
|
| 13 |
12
|
a1i |
|
| 14 |
13 3
|
sstrd |
|
| 15 |
14 8 9 10
|
ressioosup |
|
| 16 |
15 13
|
ssind |
|
| 17 |
|
elinel2 |
|
| 18 |
17
|
adantl |
|
| 19 |
|
mnfxr |
|
| 20 |
19
|
a1i |
|
| 21 |
|
ressxr |
|
| 22 |
14 21
|
sstrdi |
|
| 23 |
22
|
supxrcld |
|
| 24 |
8 23
|
eqeltrid |
|
| 25 |
24
|
adantr |
|
| 26 |
|
elinel1 |
|
| 27 |
26 10
|
eleqtrdi |
|
| 28 |
27
|
adantl |
|
| 29 |
|
iooltub |
|
| 30 |
20 25 28 29
|
syl3anc |
|
| 31 |
30
|
adantr |
|
| 32 |
|
simpr |
|
| 33 |
6
|
adantr |
|
| 34 |
33
|
adantr |
|
| 35 |
4
|
adantr |
|
| 36 |
35 18
|
ffvelcdmd |
|
| 37 |
36
|
adantr |
|
| 38 |
34 37
|
xrlenltd |
|
| 39 |
32 38
|
mpbird |
|
| 40 |
|
nfv |
|
| 41 |
2 40
|
nfan |
|
| 42 |
|
nfv |
|
| 43 |
41 42
|
nfan |
|
| 44 |
|
fveq2 |
|
| 45 |
44
|
breq1d |
|
| 46 |
45 7
|
elrab2 |
|
| 47 |
46
|
biimpi |
|
| 48 |
47
|
simprd |
|
| 49 |
48
|
adantl |
|
| 50 |
49
|
ad5ant14 |
|
| 51 |
3
|
adantr |
|
| 52 |
51 18
|
sseldd |
|
| 53 |
52
|
ad3antrrr |
|
| 54 |
14
|
sselda |
|
| 55 |
54
|
ad5ant14 |
|
| 56 |
|
simpr |
|
| 57 |
52
|
ad2antrr |
|
| 58 |
54
|
ad4ant13 |
|
| 59 |
57 58
|
ltnled |
|
| 60 |
56 59
|
mpbird |
|
| 61 |
60
|
adantllr |
|
| 62 |
53 55 61
|
ltled |
|
| 63 |
33
|
ad3antrrr |
|
| 64 |
36
|
ad3antrrr |
|
| 65 |
4
|
adantr |
|
| 66 |
13
|
sselda |
|
| 67 |
65 66
|
ffvelcdmd |
|
| 68 |
67
|
ad5ant14 |
|
| 69 |
|
simpllr |
|
| 70 |
|
nfv |
|
| 71 |
|
nfv |
|
| 72 |
|
breq1 |
|
| 73 |
|
fveq2 |
|
| 74 |
73
|
breq1d |
|
| 75 |
72 74
|
imbi12d |
|
| 76 |
|
breq2 |
|
| 77 |
|
fveq2 |
|
| 78 |
77
|
breq2d |
|
| 79 |
76 78
|
imbi12d |
|
| 80 |
75 79
|
cbvral2vw |
|
| 81 |
5 80
|
sylibr |
|
| 82 |
81
|
ad3antrrr |
|
| 83 |
18
|
ad2antrr |
|
| 84 |
66
|
ad4ant13 |
|
| 85 |
|
simpr |
|
| 86 |
70 71 82 83 84 85
|
dmrelrnrel |
|
| 87 |
86
|
adantllr |
|
| 88 |
63 64 68 69 87
|
xrletrd |
|
| 89 |
63 68
|
xrlenltd |
|
| 90 |
88 89
|
mpbid |
|
| 91 |
62 90
|
syldan |
|
| 92 |
50 91
|
condan |
|
| 93 |
92
|
ex |
|
| 94 |
43 93
|
ralrimi |
|
| 95 |
39 94
|
syldan |
|
| 96 |
22
|
adantr |
|
| 97 |
21 52
|
sselid |
|
| 98 |
|
supxrleub |
|
| 99 |
96 97 98
|
syl2anc |
|
| 100 |
99
|
adantr |
|
| 101 |
95 100
|
mpbird |
|
| 102 |
8 101
|
eqbrtrid |
|
| 103 |
25
|
adantr |
|
| 104 |
97
|
adantr |
|
| 105 |
103 104
|
xrlenltd |
|
| 106 |
102 105
|
mpbid |
|
| 107 |
31 106
|
condan |
|
| 108 |
18 107
|
jca |
|
| 109 |
7
|
reqabi |
|
| 110 |
108 109
|
sylibr |
|
| 111 |
110
|
ex |
|
| 112 |
1 111
|
ralrimi |
|
| 113 |
|
nfcv |
|
| 114 |
|
nfrab1 |
|
| 115 |
7 114
|
nfcxfr |
|
| 116 |
113 115
|
dfss3f |
|
| 117 |
112 116
|
sylibr |
|
| 118 |
16 117
|
eqssd |
|