Step |
Hyp |
Ref |
Expression |
1 |
|
ressioosup.a |
|
2 |
|
ressioosup.s |
|
3 |
|
ressioosup.n |
|
4 |
|
ressioosup.i |
|
5 |
|
mnfxr |
|
6 |
5
|
a1i |
|
7 |
|
ressxr |
|
8 |
7
|
a1i |
|
9 |
1 8
|
sstrd |
|
10 |
9
|
adantr |
|
11 |
10
|
supxrcld |
|
12 |
2 11
|
eqeltrid |
|
13 |
1
|
adantr |
|
14 |
|
simpr |
|
15 |
13 14
|
sseldd |
|
16 |
15
|
mnfltd |
|
17 |
9
|
sselda |
|
18 |
|
supxrub |
|
19 |
10 14 18
|
syl2anc |
|
20 |
2
|
a1i |
|
21 |
20
|
eqcomd |
|
22 |
19 21
|
breqtrd |
|
23 |
|
id |
|
24 |
23
|
eqcomd |
|
25 |
24
|
adantl |
|
26 |
|
simpl |
|
27 |
25 26
|
eqeltrd |
|
28 |
27
|
adantll |
|
29 |
3
|
ad2antrr |
|
30 |
28 29
|
pm2.65da |
|
31 |
30
|
neqned |
|
32 |
17 12 22 31
|
xrleneltd |
|
33 |
6 12 15 16 32
|
eliood |
|
34 |
33 4
|
eleqtrrdi |
|
35 |
34
|
ralrimiva |
|
36 |
|
dfss3 |
|
37 |
35 36
|
sylibr |
|