| Step |
Hyp |
Ref |
Expression |
| 1 |
|
preimaioomnf.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) |
| 2 |
|
preimaioomnf.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 3 |
1
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 4 |
1
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 5 |
|
fimacnvinrn2 |
⊢ ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ ℝ ) → ( ◡ 𝐹 “ ( -∞ [,) 𝐵 ) ) = ( ◡ 𝐹 “ ( ( -∞ [,) 𝐵 ) ∩ ℝ ) ) ) |
| 6 |
3 4 5
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ [,) 𝐵 ) ) = ( ◡ 𝐹 “ ( ( -∞ [,) 𝐵 ) ∩ ℝ ) ) ) |
| 7 |
2
|
icomnfinre |
⊢ ( 𝜑 → ( ( -∞ [,) 𝐵 ) ∩ ℝ ) = ( -∞ (,) 𝐵 ) ) |
| 8 |
7
|
imaeq2d |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( ( -∞ [,) 𝐵 ) ∩ ℝ ) ) = ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) ) |
| 9 |
6 8
|
eqtr2d |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) = ( ◡ 𝐹 “ ( -∞ [,) 𝐵 ) ) ) |
| 10 |
1
|
frexr |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |
| 11 |
10 2
|
preimaicomnf |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ [,) 𝐵 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐵 } ) |
| 12 |
9 11
|
eqtrd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,) 𝐵 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐵 } ) |