Metamath Proof Explorer


Theorem preimaioomnf

Description: Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses preimaioomnf.1 ( 𝜑𝐹 : 𝐴 ⟶ ℝ )
preimaioomnf.2 ( 𝜑𝐵 ∈ ℝ* )
Assertion preimaioomnf ( 𝜑 → ( 𝐹 “ ( -∞ (,) 𝐵 ) ) = { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < 𝐵 } )

Proof

Step Hyp Ref Expression
1 preimaioomnf.1 ( 𝜑𝐹 : 𝐴 ⟶ ℝ )
2 preimaioomnf.2 ( 𝜑𝐵 ∈ ℝ* )
3 1 ffund ( 𝜑 → Fun 𝐹 )
4 1 frnd ( 𝜑 → ran 𝐹 ⊆ ℝ )
5 fimacnvinrn2 ( ( Fun 𝐹 ∧ ran 𝐹 ⊆ ℝ ) → ( 𝐹 “ ( -∞ [,) 𝐵 ) ) = ( 𝐹 “ ( ( -∞ [,) 𝐵 ) ∩ ℝ ) ) )
6 3 4 5 syl2anc ( 𝜑 → ( 𝐹 “ ( -∞ [,) 𝐵 ) ) = ( 𝐹 “ ( ( -∞ [,) 𝐵 ) ∩ ℝ ) ) )
7 2 icomnfinre ( 𝜑 → ( ( -∞ [,) 𝐵 ) ∩ ℝ ) = ( -∞ (,) 𝐵 ) )
8 7 imaeq2d ( 𝜑 → ( 𝐹 “ ( ( -∞ [,) 𝐵 ) ∩ ℝ ) ) = ( 𝐹 “ ( -∞ (,) 𝐵 ) ) )
9 6 8 eqtr2d ( 𝜑 → ( 𝐹 “ ( -∞ (,) 𝐵 ) ) = ( 𝐹 “ ( -∞ [,) 𝐵 ) ) )
10 1 frexr ( 𝜑𝐹 : 𝐴 ⟶ ℝ* )
11 10 2 preimaicomnf ( 𝜑 → ( 𝐹 “ ( -∞ [,) 𝐵 ) ) = { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < 𝐵 } )
12 9 11 eqtrd ( 𝜑 → ( 𝐹 “ ( -∞ (,) 𝐵 ) ) = { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < 𝐵 } )