| Step |
Hyp |
Ref |
Expression |
| 1 |
|
preimaicomnf.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |
| 2 |
|
preimaicomnf.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 3 |
1
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 4 |
|
fncnvima2 |
⊢ ( 𝐹 Fn 𝐴 → ( ◡ 𝐹 “ ( -∞ [,) 𝐵 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) } ) |
| 5 |
3 4
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ [,) 𝐵 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) } ) |
| 6 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 7 |
6
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) ) → -∞ ∈ ℝ* ) |
| 8 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 9 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) ) |
| 10 |
|
icoltub |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) < 𝐵 ) |
| 11 |
7 8 9 10
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) < 𝐵 ) |
| 12 |
11
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) → ( 𝐹 ‘ 𝑥 ) < 𝐵 ) ) |
| 13 |
6
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) → -∞ ∈ ℝ* ) |
| 14 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 15 |
1
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
| 17 |
15
|
mnfled |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → -∞ ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 18 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) → -∞ ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 19 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) → ( 𝐹 ‘ 𝑥 ) < 𝐵 ) |
| 20 |
13 14 16 18 19
|
elicod |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) ) |
| 21 |
20
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) < 𝐵 → ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) ) ) |
| 22 |
12 21
|
impbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) ↔ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) ) |
| 23 |
22
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐵 } ) |
| 24 |
5 23
|
eqtrd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ [,) 𝐵 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐵 } ) |