Step |
Hyp |
Ref |
Expression |
1 |
|
preimaicomnf.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |
2 |
|
preimaicomnf.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
3 |
1
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
4 |
|
fncnvima2 |
⊢ ( 𝐹 Fn 𝐴 → ( ◡ 𝐹 “ ( -∞ [,) 𝐵 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) } ) |
5 |
3 4
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ [,) 𝐵 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) } ) |
6 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
7 |
6
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) ) → -∞ ∈ ℝ* ) |
8 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
9 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) ) |
10 |
|
icoltub |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) < 𝐵 ) |
11 |
7 8 9 10
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) < 𝐵 ) |
12 |
11
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) → ( 𝐹 ‘ 𝑥 ) < 𝐵 ) ) |
13 |
6
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) → -∞ ∈ ℝ* ) |
14 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) → 𝐵 ∈ ℝ* ) |
15 |
1
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
17 |
15
|
mnfled |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → -∞ ≤ ( 𝐹 ‘ 𝑥 ) ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) → -∞ ≤ ( 𝐹 ‘ 𝑥 ) ) |
19 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) → ( 𝐹 ‘ 𝑥 ) < 𝐵 ) |
20 |
13 14 16 18 19
|
elicod |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) ) |
21 |
20
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) < 𝐵 → ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) ) ) |
22 |
12 21
|
impbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) ↔ ( 𝐹 ‘ 𝑥 ) < 𝐵 ) ) |
23 |
22
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ [,) 𝐵 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐵 } ) |
24 |
5 23
|
eqtrd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ [,) 𝐵 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐵 } ) |