Metamath Proof Explorer


Theorem preimaicomnf

Description: Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses preimaicomnf.1 φ F : A *
preimaicomnf.2 φ B *
Assertion preimaicomnf φ F -1 −∞ B = x A | F x < B

Proof

Step Hyp Ref Expression
1 preimaicomnf.1 φ F : A *
2 preimaicomnf.2 φ B *
3 1 ffnd φ F Fn A
4 fncnvima2 F Fn A F -1 −∞ B = x A | F x −∞ B
5 3 4 syl φ F -1 −∞ B = x A | F x −∞ B
6 mnfxr −∞ *
7 6 a1i φ x A F x −∞ B −∞ *
8 2 ad2antrr φ x A F x −∞ B B *
9 simpr φ x A F x −∞ B F x −∞ B
10 icoltub −∞ * B * F x −∞ B F x < B
11 7 8 9 10 syl3anc φ x A F x −∞ B F x < B
12 11 ex φ x A F x −∞ B F x < B
13 6 a1i φ x A F x < B −∞ *
14 2 ad2antrr φ x A F x < B B *
15 1 ffvelrnda φ x A F x *
16 15 adantr φ x A F x < B F x *
17 15 mnfled φ x A −∞ F x
18 17 adantr φ x A F x < B −∞ F x
19 simpr φ x A F x < B F x < B
20 13 14 16 18 19 elicod φ x A F x < B F x −∞ B
21 20 ex φ x A F x < B F x −∞ B
22 12 21 impbid φ x A F x −∞ B F x < B
23 22 rabbidva φ x A | F x −∞ B = x A | F x < B
24 5 23 eqtrd φ F -1 −∞ B = x A | F x < B