Metamath Proof Explorer


Theorem preimaicomnf

Description: Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses preimaicomnf.1
|- ( ph -> F : A --> RR* )
preimaicomnf.2
|- ( ph -> B e. RR* )
Assertion preimaicomnf
|- ( ph -> ( `' F " ( -oo [,) B ) ) = { x e. A | ( F ` x ) < B } )

Proof

Step Hyp Ref Expression
1 preimaicomnf.1
 |-  ( ph -> F : A --> RR* )
2 preimaicomnf.2
 |-  ( ph -> B e. RR* )
3 1 ffnd
 |-  ( ph -> F Fn A )
4 fncnvima2
 |-  ( F Fn A -> ( `' F " ( -oo [,) B ) ) = { x e. A | ( F ` x ) e. ( -oo [,) B ) } )
5 3 4 syl
 |-  ( ph -> ( `' F " ( -oo [,) B ) ) = { x e. A | ( F ` x ) e. ( -oo [,) B ) } )
6 mnfxr
 |-  -oo e. RR*
7 6 a1i
 |-  ( ( ( ph /\ x e. A ) /\ ( F ` x ) e. ( -oo [,) B ) ) -> -oo e. RR* )
8 2 ad2antrr
 |-  ( ( ( ph /\ x e. A ) /\ ( F ` x ) e. ( -oo [,) B ) ) -> B e. RR* )
9 simpr
 |-  ( ( ( ph /\ x e. A ) /\ ( F ` x ) e. ( -oo [,) B ) ) -> ( F ` x ) e. ( -oo [,) B ) )
10 icoltub
 |-  ( ( -oo e. RR* /\ B e. RR* /\ ( F ` x ) e. ( -oo [,) B ) ) -> ( F ` x ) < B )
11 7 8 9 10 syl3anc
 |-  ( ( ( ph /\ x e. A ) /\ ( F ` x ) e. ( -oo [,) B ) ) -> ( F ` x ) < B )
12 11 ex
 |-  ( ( ph /\ x e. A ) -> ( ( F ` x ) e. ( -oo [,) B ) -> ( F ` x ) < B ) )
13 6 a1i
 |-  ( ( ( ph /\ x e. A ) /\ ( F ` x ) < B ) -> -oo e. RR* )
14 2 ad2antrr
 |-  ( ( ( ph /\ x e. A ) /\ ( F ` x ) < B ) -> B e. RR* )
15 1 ffvelrnda
 |-  ( ( ph /\ x e. A ) -> ( F ` x ) e. RR* )
16 15 adantr
 |-  ( ( ( ph /\ x e. A ) /\ ( F ` x ) < B ) -> ( F ` x ) e. RR* )
17 15 mnfled
 |-  ( ( ph /\ x e. A ) -> -oo <_ ( F ` x ) )
18 17 adantr
 |-  ( ( ( ph /\ x e. A ) /\ ( F ` x ) < B ) -> -oo <_ ( F ` x ) )
19 simpr
 |-  ( ( ( ph /\ x e. A ) /\ ( F ` x ) < B ) -> ( F ` x ) < B )
20 13 14 16 18 19 elicod
 |-  ( ( ( ph /\ x e. A ) /\ ( F ` x ) < B ) -> ( F ` x ) e. ( -oo [,) B ) )
21 20 ex
 |-  ( ( ph /\ x e. A ) -> ( ( F ` x ) < B -> ( F ` x ) e. ( -oo [,) B ) ) )
22 12 21 impbid
 |-  ( ( ph /\ x e. A ) -> ( ( F ` x ) e. ( -oo [,) B ) <-> ( F ` x ) < B ) )
23 22 rabbidva
 |-  ( ph -> { x e. A | ( F ` x ) e. ( -oo [,) B ) } = { x e. A | ( F ` x ) < B } )
24 5 23 eqtrd
 |-  ( ph -> ( `' F " ( -oo [,) B ) ) = { x e. A | ( F ` x ) < B } )