Step |
Hyp |
Ref |
Expression |
1 |
|
preimaicomnf.1 |
|- ( ph -> F : A --> RR* ) |
2 |
|
preimaicomnf.2 |
|- ( ph -> B e. RR* ) |
3 |
1
|
ffnd |
|- ( ph -> F Fn A ) |
4 |
|
fncnvima2 |
|- ( F Fn A -> ( `' F " ( -oo [,) B ) ) = { x e. A | ( F ` x ) e. ( -oo [,) B ) } ) |
5 |
3 4
|
syl |
|- ( ph -> ( `' F " ( -oo [,) B ) ) = { x e. A | ( F ` x ) e. ( -oo [,) B ) } ) |
6 |
|
mnfxr |
|- -oo e. RR* |
7 |
6
|
a1i |
|- ( ( ( ph /\ x e. A ) /\ ( F ` x ) e. ( -oo [,) B ) ) -> -oo e. RR* ) |
8 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. A ) /\ ( F ` x ) e. ( -oo [,) B ) ) -> B e. RR* ) |
9 |
|
simpr |
|- ( ( ( ph /\ x e. A ) /\ ( F ` x ) e. ( -oo [,) B ) ) -> ( F ` x ) e. ( -oo [,) B ) ) |
10 |
|
icoltub |
|- ( ( -oo e. RR* /\ B e. RR* /\ ( F ` x ) e. ( -oo [,) B ) ) -> ( F ` x ) < B ) |
11 |
7 8 9 10
|
syl3anc |
|- ( ( ( ph /\ x e. A ) /\ ( F ` x ) e. ( -oo [,) B ) ) -> ( F ` x ) < B ) |
12 |
11
|
ex |
|- ( ( ph /\ x e. A ) -> ( ( F ` x ) e. ( -oo [,) B ) -> ( F ` x ) < B ) ) |
13 |
6
|
a1i |
|- ( ( ( ph /\ x e. A ) /\ ( F ` x ) < B ) -> -oo e. RR* ) |
14 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. A ) /\ ( F ` x ) < B ) -> B e. RR* ) |
15 |
1
|
ffvelrnda |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. RR* ) |
16 |
15
|
adantr |
|- ( ( ( ph /\ x e. A ) /\ ( F ` x ) < B ) -> ( F ` x ) e. RR* ) |
17 |
15
|
mnfled |
|- ( ( ph /\ x e. A ) -> -oo <_ ( F ` x ) ) |
18 |
17
|
adantr |
|- ( ( ( ph /\ x e. A ) /\ ( F ` x ) < B ) -> -oo <_ ( F ` x ) ) |
19 |
|
simpr |
|- ( ( ( ph /\ x e. A ) /\ ( F ` x ) < B ) -> ( F ` x ) < B ) |
20 |
13 14 16 18 19
|
elicod |
|- ( ( ( ph /\ x e. A ) /\ ( F ` x ) < B ) -> ( F ` x ) e. ( -oo [,) B ) ) |
21 |
20
|
ex |
|- ( ( ph /\ x e. A ) -> ( ( F ` x ) < B -> ( F ` x ) e. ( -oo [,) B ) ) ) |
22 |
12 21
|
impbid |
|- ( ( ph /\ x e. A ) -> ( ( F ` x ) e. ( -oo [,) B ) <-> ( F ` x ) < B ) ) |
23 |
22
|
rabbidva |
|- ( ph -> { x e. A | ( F ` x ) e. ( -oo [,) B ) } = { x e. A | ( F ` x ) < B } ) |
24 |
5 23
|
eqtrd |
|- ( ph -> ( `' F " ( -oo [,) B ) ) = { x e. A | ( F ` x ) < B } ) |