| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pimltpnf2f.1 |
|- F/_ x F |
| 2 |
|
pimltpnf2f.2 |
|- F/_ x A |
| 3 |
|
pimltpnf2f.3 |
|- ( ph -> F : A --> RR ) |
| 4 |
|
nfcv |
|- F/_ y A |
| 5 |
|
nfv |
|- F/ y ( F ` x ) < +oo |
| 6 |
|
nfcv |
|- F/_ x y |
| 7 |
1 6
|
nffv |
|- F/_ x ( F ` y ) |
| 8 |
|
nfcv |
|- F/_ x < |
| 9 |
|
nfcv |
|- F/_ x +oo |
| 10 |
7 8 9
|
nfbr |
|- F/ x ( F ` y ) < +oo |
| 11 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
| 12 |
11
|
breq1d |
|- ( x = y -> ( ( F ` x ) < +oo <-> ( F ` y ) < +oo ) ) |
| 13 |
2 4 5 10 12
|
cbvrabw |
|- { x e. A | ( F ` x ) < +oo } = { y e. A | ( F ` y ) < +oo } |
| 14 |
|
nfv |
|- F/ y ph |
| 15 |
3
|
ffvelcdmda |
|- ( ( ph /\ y e. A ) -> ( F ` y ) e. RR ) |
| 16 |
14 15
|
pimltpnf |
|- ( ph -> { y e. A | ( F ` y ) < +oo } = A ) |
| 17 |
13 16
|
eqtrid |
|- ( ph -> { x e. A | ( F ` x ) < +oo } = A ) |