Metamath Proof Explorer


Theorem pimltpnf2

Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +oo , is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 15-Dec-2024)

Ref Expression
Hypotheses pimltpnf2.1
|- F/_ x F
pimltpnf2.2
|- ( ph -> F : A --> RR )
Assertion pimltpnf2
|- ( ph -> { x e. A | ( F ` x ) < +oo } = A )

Proof

Step Hyp Ref Expression
1 pimltpnf2.1
 |-  F/_ x F
2 pimltpnf2.2
 |-  ( ph -> F : A --> RR )
3 nfcv
 |-  F/_ x A
4 1 3 2 pimltpnf2f
 |-  ( ph -> { x e. A | ( F ` x ) < +oo } = A )