| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pimgtmnf2.1 |
|- F/_ x F |
| 2 |
|
pimgtmnf2.2 |
|- ( ph -> F : A --> RR ) |
| 3 |
|
ssrab2 |
|- { x e. A | -oo < ( F ` x ) } C_ A |
| 4 |
3
|
a1i |
|- ( ph -> { x e. A | -oo < ( F ` x ) } C_ A ) |
| 5 |
|
ssid |
|- A C_ A |
| 6 |
5
|
a1i |
|- ( ph -> A C_ A ) |
| 7 |
2
|
ffvelcdmda |
|- ( ( ph /\ y e. A ) -> ( F ` y ) e. RR ) |
| 8 |
7
|
mnfltd |
|- ( ( ph /\ y e. A ) -> -oo < ( F ` y ) ) |
| 9 |
8
|
ralrimiva |
|- ( ph -> A. y e. A -oo < ( F ` y ) ) |
| 10 |
|
nfcv |
|- F/_ x -oo |
| 11 |
|
nfcv |
|- F/_ x < |
| 12 |
|
nfcv |
|- F/_ x y |
| 13 |
1 12
|
nffv |
|- F/_ x ( F ` y ) |
| 14 |
10 11 13
|
nfbr |
|- F/ x -oo < ( F ` y ) |
| 15 |
|
nfv |
|- F/ y -oo < ( F ` x ) |
| 16 |
|
fveq2 |
|- ( y = x -> ( F ` y ) = ( F ` x ) ) |
| 17 |
16
|
breq2d |
|- ( y = x -> ( -oo < ( F ` y ) <-> -oo < ( F ` x ) ) ) |
| 18 |
14 15 17
|
cbvralw |
|- ( A. y e. A -oo < ( F ` y ) <-> A. x e. A -oo < ( F ` x ) ) |
| 19 |
9 18
|
sylib |
|- ( ph -> A. x e. A -oo < ( F ` x ) ) |
| 20 |
6 19
|
jca |
|- ( ph -> ( A C_ A /\ A. x e. A -oo < ( F ` x ) ) ) |
| 21 |
|
nfcv |
|- F/_ x A |
| 22 |
21 21
|
ssrabf |
|- ( A C_ { x e. A | -oo < ( F ` x ) } <-> ( A C_ A /\ A. x e. A -oo < ( F ` x ) ) ) |
| 23 |
20 22
|
sylibr |
|- ( ph -> A C_ { x e. A | -oo < ( F ` x ) } ) |
| 24 |
4 23
|
eqssd |
|- ( ph -> { x e. A | -oo < ( F ` x ) } = A ) |