Metamath Proof Explorer


Theorem pimgtmnf2

Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -oo , is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses pimgtmnf2.1
|- F/_ x F
pimgtmnf2.2
|- ( ph -> F : A --> RR )
Assertion pimgtmnf2
|- ( ph -> { x e. A | -oo < ( F ` x ) } = A )

Proof

Step Hyp Ref Expression
1 pimgtmnf2.1
 |-  F/_ x F
2 pimgtmnf2.2
 |-  ( ph -> F : A --> RR )
3 ssrab2
 |-  { x e. A | -oo < ( F ` x ) } C_ A
4 3 a1i
 |-  ( ph -> { x e. A | -oo < ( F ` x ) } C_ A )
5 ssid
 |-  A C_ A
6 5 a1i
 |-  ( ph -> A C_ A )
7 2 ffvelrnda
 |-  ( ( ph /\ y e. A ) -> ( F ` y ) e. RR )
8 7 mnfltd
 |-  ( ( ph /\ y e. A ) -> -oo < ( F ` y ) )
9 8 ralrimiva
 |-  ( ph -> A. y e. A -oo < ( F ` y ) )
10 nfcv
 |-  F/_ x -oo
11 nfcv
 |-  F/_ x <
12 nfcv
 |-  F/_ x y
13 1 12 nffv
 |-  F/_ x ( F ` y )
14 10 11 13 nfbr
 |-  F/ x -oo < ( F ` y )
15 nfv
 |-  F/ y -oo < ( F ` x )
16 fveq2
 |-  ( y = x -> ( F ` y ) = ( F ` x ) )
17 16 breq2d
 |-  ( y = x -> ( -oo < ( F ` y ) <-> -oo < ( F ` x ) ) )
18 14 15 17 cbvralw
 |-  ( A. y e. A -oo < ( F ` y ) <-> A. x e. A -oo < ( F ` x ) )
19 9 18 sylib
 |-  ( ph -> A. x e. A -oo < ( F ` x ) )
20 6 19 jca
 |-  ( ph -> ( A C_ A /\ A. x e. A -oo < ( F ` x ) ) )
21 nfcv
 |-  F/_ x A
22 21 21 ssrabf
 |-  ( A C_ { x e. A | -oo < ( F ` x ) } <-> ( A C_ A /\ A. x e. A -oo < ( F ` x ) ) )
23 20 22 sylibr
 |-  ( ph -> A C_ { x e. A | -oo < ( F ` x ) } )
24 4 23 eqssd
 |-  ( ph -> { x e. A | -oo < ( F ` x ) } = A )