| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pimgtmnf2.1 |  |-  F/_ x F | 
						
							| 2 |  | pimgtmnf2.2 |  |-  ( ph -> F : A --> RR ) | 
						
							| 3 |  | ssrab2 |  |-  { x e. A | -oo < ( F ` x ) } C_ A | 
						
							| 4 | 3 | a1i |  |-  ( ph -> { x e. A | -oo < ( F ` x ) } C_ A ) | 
						
							| 5 |  | ssid |  |-  A C_ A | 
						
							| 6 | 5 | a1i |  |-  ( ph -> A C_ A ) | 
						
							| 7 | 2 | ffvelcdmda |  |-  ( ( ph /\ y e. A ) -> ( F ` y ) e. RR ) | 
						
							| 8 | 7 | mnfltd |  |-  ( ( ph /\ y e. A ) -> -oo < ( F ` y ) ) | 
						
							| 9 | 8 | ralrimiva |  |-  ( ph -> A. y e. A -oo < ( F ` y ) ) | 
						
							| 10 |  | nfcv |  |-  F/_ x -oo | 
						
							| 11 |  | nfcv |  |-  F/_ x < | 
						
							| 12 |  | nfcv |  |-  F/_ x y | 
						
							| 13 | 1 12 | nffv |  |-  F/_ x ( F ` y ) | 
						
							| 14 | 10 11 13 | nfbr |  |-  F/ x -oo < ( F ` y ) | 
						
							| 15 |  | nfv |  |-  F/ y -oo < ( F ` x ) | 
						
							| 16 |  | fveq2 |  |-  ( y = x -> ( F ` y ) = ( F ` x ) ) | 
						
							| 17 | 16 | breq2d |  |-  ( y = x -> ( -oo < ( F ` y ) <-> -oo < ( F ` x ) ) ) | 
						
							| 18 | 14 15 17 | cbvralw |  |-  ( A. y e. A -oo < ( F ` y ) <-> A. x e. A -oo < ( F ` x ) ) | 
						
							| 19 | 9 18 | sylib |  |-  ( ph -> A. x e. A -oo < ( F ` x ) ) | 
						
							| 20 | 6 19 | jca |  |-  ( ph -> ( A C_ A /\ A. x e. A -oo < ( F ` x ) ) ) | 
						
							| 21 |  | nfcv |  |-  F/_ x A | 
						
							| 22 | 21 21 | ssrabf |  |-  ( A C_ { x e. A | -oo < ( F ` x ) } <-> ( A C_ A /\ A. x e. A -oo < ( F ` x ) ) ) | 
						
							| 23 | 20 22 | sylibr |  |-  ( ph -> A C_ { x e. A | -oo < ( F ` x ) } ) | 
						
							| 24 | 4 23 | eqssd |  |-  ( ph -> { x e. A | -oo < ( F ` x ) } = A ) |