Metamath Proof Explorer


Theorem pimltpnf2

Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +oo , is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 15-Dec-2024)

Ref Expression
Hypotheses pimltpnf2.1 𝑥 𝐹
pimltpnf2.2 ( 𝜑𝐹 : 𝐴 ⟶ ℝ )
Assertion pimltpnf2 ( 𝜑 → { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < +∞ } = 𝐴 )

Proof

Step Hyp Ref Expression
1 pimltpnf2.1 𝑥 𝐹
2 pimltpnf2.2 ( 𝜑𝐹 : 𝐴 ⟶ ℝ )
3 nfcv 𝑥 𝐴
4 1 3 2 pimltpnf2f ( 𝜑 → { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < +∞ } = 𝐴 )