Step |
Hyp |
Ref |
Expression |
1 |
|
pimltpnf2.1 |
⊢ Ⅎ 𝑥 𝐹 |
2 |
|
pimltpnf2.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) |
3 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
4 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
5 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑥 ) < +∞ |
6 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
7 |
1 6
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) |
8 |
|
nfcv |
⊢ Ⅎ 𝑥 < |
9 |
|
nfcv |
⊢ Ⅎ 𝑥 +∞ |
10 |
7 8 9
|
nfbr |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) < +∞ |
11 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
12 |
11
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) < +∞ ↔ ( 𝐹 ‘ 𝑦 ) < +∞ ) ) |
13 |
3 4 5 10 12
|
cbvrabw |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < +∞ } = { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) < +∞ } |
14 |
13
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < +∞ } = { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) < +∞ } ) |
15 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
16 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
17 |
15 16
|
pimltpnf |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑦 ) < +∞ } = 𝐴 ) |
18 |
14 17
|
eqtrd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < +∞ } = 𝐴 ) |