Metamath Proof Explorer


Theorem pimltpnf2

Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +oo , is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses pimltpnf2.1 𝑥 𝐹
pimltpnf2.2 ( 𝜑𝐹 : 𝐴 ⟶ ℝ )
Assertion pimltpnf2 ( 𝜑 → { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < +∞ } = 𝐴 )

Proof

Step Hyp Ref Expression
1 pimltpnf2.1 𝑥 𝐹
2 pimltpnf2.2 ( 𝜑𝐹 : 𝐴 ⟶ ℝ )
3 nfcv 𝑥 𝐴
4 nfcv 𝑦 𝐴
5 nfv 𝑦 ( 𝐹𝑥 ) < +∞
6 nfcv 𝑥 𝑦
7 1 6 nffv 𝑥 ( 𝐹𝑦 )
8 nfcv 𝑥 <
9 nfcv 𝑥 +∞
10 7 8 9 nfbr 𝑥 ( 𝐹𝑦 ) < +∞
11 fveq2 ( 𝑥 = 𝑦 → ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
12 11 breq1d ( 𝑥 = 𝑦 → ( ( 𝐹𝑥 ) < +∞ ↔ ( 𝐹𝑦 ) < +∞ ) )
13 3 4 5 10 12 cbvrabw { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < +∞ } = { 𝑦𝐴 ∣ ( 𝐹𝑦 ) < +∞ }
14 13 a1i ( 𝜑 → { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < +∞ } = { 𝑦𝐴 ∣ ( 𝐹𝑦 ) < +∞ } )
15 nfv 𝑦 𝜑
16 2 ffvelrnda ( ( 𝜑𝑦𝐴 ) → ( 𝐹𝑦 ) ∈ ℝ )
17 15 16 pimltpnf ( 𝜑 → { 𝑦𝐴 ∣ ( 𝐹𝑦 ) < +∞ } = 𝐴 )
18 14 17 eqtrd ( 𝜑 → { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < +∞ } = 𝐴 )