Metamath Proof Explorer


Theorem pimltpnf2

Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +oo , is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 15-Dec-2024)

Ref Expression
Hypotheses pimltpnf2.1 _xF
pimltpnf2.2 φF:A
Assertion pimltpnf2 φxA|Fx<+∞=A

Proof

Step Hyp Ref Expression
1 pimltpnf2.1 _xF
2 pimltpnf2.2 φF:A
3 nfcv _xA
4 1 3 2 pimltpnf2f φxA|Fx<+∞=A