Metamath Proof Explorer


Theorem pimltpnf2

Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +oo , is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 15-Dec-2024)

Ref Expression
Hypotheses pimltpnf2.1 _ x F
pimltpnf2.2 φ F : A
Assertion pimltpnf2 φ x A | F x < +∞ = A

Proof

Step Hyp Ref Expression
1 pimltpnf2.1 _ x F
2 pimltpnf2.2 φ F : A
3 nfcv _ x A
4 1 3 2 pimltpnf2f φ x A | F x < +∞ = A