Metamath Proof Explorer


Theorem pimltpnf

Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +oo , is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses pimltpnf.1 𝑥 𝜑
pimltpnf.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
Assertion pimltpnf ( 𝜑 → { 𝑥𝐴𝐵 < +∞ } = 𝐴 )

Proof

Step Hyp Ref Expression
1 pimltpnf.1 𝑥 𝜑
2 pimltpnf.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
3 ssrab2 { 𝑥𝐴𝐵 < +∞ } ⊆ 𝐴
4 3 a1i ( 𝜑 → { 𝑥𝐴𝐵 < +∞ } ⊆ 𝐴 )
5 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
6 ltpnf ( 𝐵 ∈ ℝ → 𝐵 < +∞ )
7 2 6 syl ( ( 𝜑𝑥𝐴 ) → 𝐵 < +∞ )
8 5 7 jca ( ( 𝜑𝑥𝐴 ) → ( 𝑥𝐴𝐵 < +∞ ) )
9 rabid ( 𝑥 ∈ { 𝑥𝐴𝐵 < +∞ } ↔ ( 𝑥𝐴𝐵 < +∞ ) )
10 8 9 sylibr ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ { 𝑥𝐴𝐵 < +∞ } )
11 10 ex ( 𝜑 → ( 𝑥𝐴𝑥 ∈ { 𝑥𝐴𝐵 < +∞ } ) )
12 1 11 ralrimi ( 𝜑 → ∀ 𝑥𝐴 𝑥 ∈ { 𝑥𝐴𝐵 < +∞ } )
13 nfcv 𝑥 𝐴
14 nfrab1 𝑥 { 𝑥𝐴𝐵 < +∞ }
15 13 14 dfss3f ( 𝐴 ⊆ { 𝑥𝐴𝐵 < +∞ } ↔ ∀ 𝑥𝐴 𝑥 ∈ { 𝑥𝐴𝐵 < +∞ } )
16 12 15 sylibr ( 𝜑𝐴 ⊆ { 𝑥𝐴𝐵 < +∞ } )
17 4 16 eqssd ( 𝜑 → { 𝑥𝐴𝐵 < +∞ } = 𝐴 )