Metamath Proof Explorer


Theorem pimltpnf

Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +oo , is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses pimltpnf.1 𝑥 𝜑
pimltpnf.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
Assertion pimltpnf ( 𝜑 → { 𝑥𝐴𝐵 < +∞ } = 𝐴 )

Proof

Step Hyp Ref Expression
1 pimltpnf.1 𝑥 𝜑
2 pimltpnf.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
3 nfcv 𝑥 𝐴
4 1 3 2 pimltpnff ( 𝜑 → { 𝑥𝐴𝐵 < +∞ } = 𝐴 )