Metamath Proof Explorer


Theorem pimltpnff

Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +oo , is the whole domain. (Contributed by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses pimltpnff.1 𝑥 𝜑
pimltpnff.2 𝑥 𝐴
pimltpnff.3 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
Assertion pimltpnff ( 𝜑 → { 𝑥𝐴𝐵 < +∞ } = 𝐴 )

Proof

Step Hyp Ref Expression
1 pimltpnff.1 𝑥 𝜑
2 pimltpnff.2 𝑥 𝐴
3 pimltpnff.3 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
4 2 ssrab2f { 𝑥𝐴𝐵 < +∞ } ⊆ 𝐴
5 4 a1i ( 𝜑 → { 𝑥𝐴𝐵 < +∞ } ⊆ 𝐴 )
6 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
7 ltpnf ( 𝐵 ∈ ℝ → 𝐵 < +∞ )
8 3 7 syl ( ( 𝜑𝑥𝐴 ) → 𝐵 < +∞ )
9 6 8 jca ( ( 𝜑𝑥𝐴 ) → ( 𝑥𝐴𝐵 < +∞ ) )
10 rabid ( 𝑥 ∈ { 𝑥𝐴𝐵 < +∞ } ↔ ( 𝑥𝐴𝐵 < +∞ ) )
11 9 10 sylibr ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ { 𝑥𝐴𝐵 < +∞ } )
12 11 ex ( 𝜑 → ( 𝑥𝐴𝑥 ∈ { 𝑥𝐴𝐵 < +∞ } ) )
13 1 12 ralrimi ( 𝜑 → ∀ 𝑥𝐴 𝑥 ∈ { 𝑥𝐴𝐵 < +∞ } )
14 nfrab1 𝑥 { 𝑥𝐴𝐵 < +∞ }
15 2 14 dfss3f ( 𝐴 ⊆ { 𝑥𝐴𝐵 < +∞ } ↔ ∀ 𝑥𝐴 𝑥 ∈ { 𝑥𝐴𝐵 < +∞ } )
16 13 15 sylibr ( 𝜑𝐴 ⊆ { 𝑥𝐴𝐵 < +∞ } )
17 5 16 eqssd ( 𝜑 → { 𝑥𝐴𝐵 < +∞ } = 𝐴 )