Step |
Hyp |
Ref |
Expression |
1 |
|
pimltpnff.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
pimltpnff.2 |
⊢ Ⅎ 𝑥 𝐴 |
3 |
|
pimltpnff.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
4 |
2
|
ssrab2f |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝐵 < +∞ } ⊆ 𝐴 |
5 |
4
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐵 < +∞ } ⊆ 𝐴 ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
7 |
|
ltpnf |
⊢ ( 𝐵 ∈ ℝ → 𝐵 < +∞ ) |
8 |
3 7
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 < +∞ ) |
9 |
6 8
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 ∧ 𝐵 < +∞ ) ) |
10 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 < +∞ } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝐵 < +∞ ) ) |
11 |
9 10
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 < +∞ } ) |
12 |
11
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 < +∞ } ) ) |
13 |
1 12
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 < +∞ } ) |
14 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ 𝐵 < +∞ } |
15 |
2 14
|
dfss3f |
⊢ ( 𝐴 ⊆ { 𝑥 ∈ 𝐴 ∣ 𝐵 < +∞ } ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 < +∞ } ) |
16 |
13 15
|
sylibr |
⊢ ( 𝜑 → 𝐴 ⊆ { 𝑥 ∈ 𝐴 ∣ 𝐵 < +∞ } ) |
17 |
5 16
|
eqssd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐵 < +∞ } = 𝐴 ) |