| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pimltpnff.1 | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | pimltpnff.2 | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 3 |  | pimltpnff.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 4 | 2 | ssrab2f | ⊢ { 𝑥  ∈  𝐴  ∣  𝐵  <  +∞ }  ⊆  𝐴 | 
						
							| 5 | 4 | a1i | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  𝐵  <  +∞ }  ⊆  𝐴 ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 7 |  | ltpnf | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  <  +∞ ) | 
						
							| 8 | 3 7 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  <  +∞ ) | 
						
							| 9 | 6 8 | jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  𝐴  ∧  𝐵  <  +∞ ) ) | 
						
							| 10 |  | rabid | ⊢ ( 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  +∞ }  ↔  ( 𝑥  ∈  𝐴  ∧  𝐵  <  +∞ ) ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  +∞ } ) | 
						
							| 12 | 11 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  +∞ } ) ) | 
						
							| 13 | 1 12 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  +∞ } ) | 
						
							| 14 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  𝐴  ∣  𝐵  <  +∞ } | 
						
							| 15 | 2 14 | dfss3f | ⊢ ( 𝐴  ⊆  { 𝑥  ∈  𝐴  ∣  𝐵  <  +∞ }  ↔  ∀ 𝑥  ∈  𝐴 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  <  +∞ } ) | 
						
							| 16 | 13 15 | sylibr | ⊢ ( 𝜑  →  𝐴  ⊆  { 𝑥  ∈  𝐴  ∣  𝐵  <  +∞ } ) | 
						
							| 17 | 5 16 | eqssd | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  𝐵  <  +∞ }  =  𝐴 ) |