Metamath Proof Explorer


Theorem pimltpnff

Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +oo , is the whole domain. (Contributed by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses pimltpnff.1
|- F/ x ph
pimltpnff.2
|- F/_ x A
pimltpnff.3
|- ( ( ph /\ x e. A ) -> B e. RR )
Assertion pimltpnff
|- ( ph -> { x e. A | B < +oo } = A )

Proof

Step Hyp Ref Expression
1 pimltpnff.1
 |-  F/ x ph
2 pimltpnff.2
 |-  F/_ x A
3 pimltpnff.3
 |-  ( ( ph /\ x e. A ) -> B e. RR )
4 2 ssrab2f
 |-  { x e. A | B < +oo } C_ A
5 4 a1i
 |-  ( ph -> { x e. A | B < +oo } C_ A )
6 simpr
 |-  ( ( ph /\ x e. A ) -> x e. A )
7 ltpnf
 |-  ( B e. RR -> B < +oo )
8 3 7 syl
 |-  ( ( ph /\ x e. A ) -> B < +oo )
9 6 8 jca
 |-  ( ( ph /\ x e. A ) -> ( x e. A /\ B < +oo ) )
10 rabid
 |-  ( x e. { x e. A | B < +oo } <-> ( x e. A /\ B < +oo ) )
11 9 10 sylibr
 |-  ( ( ph /\ x e. A ) -> x e. { x e. A | B < +oo } )
12 11 ex
 |-  ( ph -> ( x e. A -> x e. { x e. A | B < +oo } ) )
13 1 12 ralrimi
 |-  ( ph -> A. x e. A x e. { x e. A | B < +oo } )
14 nfrab1
 |-  F/_ x { x e. A | B < +oo }
15 2 14 dfss3f
 |-  ( A C_ { x e. A | B < +oo } <-> A. x e. A x e. { x e. A | B < +oo } )
16 13 15 sylibr
 |-  ( ph -> A C_ { x e. A | B < +oo } )
17 5 16 eqssd
 |-  ( ph -> { x e. A | B < +oo } = A )