Step |
Hyp |
Ref |
Expression |
1 |
|
pimltpnf.1 |
|- F/ x ph |
2 |
|
pimltpnf.2 |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
3 |
|
ssrab2 |
|- { x e. A | B < +oo } C_ A |
4 |
3
|
a1i |
|- ( ph -> { x e. A | B < +oo } C_ A ) |
5 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
6 |
|
ltpnf |
|- ( B e. RR -> B < +oo ) |
7 |
2 6
|
syl |
|- ( ( ph /\ x e. A ) -> B < +oo ) |
8 |
5 7
|
jca |
|- ( ( ph /\ x e. A ) -> ( x e. A /\ B < +oo ) ) |
9 |
|
rabid |
|- ( x e. { x e. A | B < +oo } <-> ( x e. A /\ B < +oo ) ) |
10 |
8 9
|
sylibr |
|- ( ( ph /\ x e. A ) -> x e. { x e. A | B < +oo } ) |
11 |
10
|
ex |
|- ( ph -> ( x e. A -> x e. { x e. A | B < +oo } ) ) |
12 |
1 11
|
ralrimi |
|- ( ph -> A. x e. A x e. { x e. A | B < +oo } ) |
13 |
|
nfcv |
|- F/_ x A |
14 |
|
nfrab1 |
|- F/_ x { x e. A | B < +oo } |
15 |
13 14
|
dfss3f |
|- ( A C_ { x e. A | B < +oo } <-> A. x e. A x e. { x e. A | B < +oo } ) |
16 |
12 15
|
sylibr |
|- ( ph -> A C_ { x e. A | B < +oo } ) |
17 |
4 16
|
eqssd |
|- ( ph -> { x e. A | B < +oo } = A ) |