Metamath Proof Explorer


Theorem pimltpnf

Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +oo , is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses pimltpnf.1
|- F/ x ph
pimltpnf.2
|- ( ( ph /\ x e. A ) -> B e. RR )
Assertion pimltpnf
|- ( ph -> { x e. A | B < +oo } = A )

Proof

Step Hyp Ref Expression
1 pimltpnf.1
 |-  F/ x ph
2 pimltpnf.2
 |-  ( ( ph /\ x e. A ) -> B e. RR )
3 nfcv
 |-  F/_ x A
4 1 3 2 pimltpnff
 |-  ( ph -> { x e. A | B < +oo } = A )