Metamath Proof Explorer


Theorem pimltpnf

Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +oo , is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses pimltpnf.1
|- F/ x ph
pimltpnf.2
|- ( ( ph /\ x e. A ) -> B e. RR )
Assertion pimltpnf
|- ( ph -> { x e. A | B < +oo } = A )

Proof

Step Hyp Ref Expression
1 pimltpnf.1
 |-  F/ x ph
2 pimltpnf.2
 |-  ( ( ph /\ x e. A ) -> B e. RR )
3 ssrab2
 |-  { x e. A | B < +oo } C_ A
4 3 a1i
 |-  ( ph -> { x e. A | B < +oo } C_ A )
5 simpr
 |-  ( ( ph /\ x e. A ) -> x e. A )
6 ltpnf
 |-  ( B e. RR -> B < +oo )
7 2 6 syl
 |-  ( ( ph /\ x e. A ) -> B < +oo )
8 5 7 jca
 |-  ( ( ph /\ x e. A ) -> ( x e. A /\ B < +oo ) )
9 rabid
 |-  ( x e. { x e. A | B < +oo } <-> ( x e. A /\ B < +oo ) )
10 8 9 sylibr
 |-  ( ( ph /\ x e. A ) -> x e. { x e. A | B < +oo } )
11 10 ex
 |-  ( ph -> ( x e. A -> x e. { x e. A | B < +oo } ) )
12 1 11 ralrimi
 |-  ( ph -> A. x e. A x e. { x e. A | B < +oo } )
13 nfcv
 |-  F/_ x A
14 nfrab1
 |-  F/_ x { x e. A | B < +oo }
15 13 14 dfss3f
 |-  ( A C_ { x e. A | B < +oo } <-> A. x e. A x e. { x e. A | B < +oo } )
16 12 15 sylibr
 |-  ( ph -> A C_ { x e. A | B < +oo } )
17 4 16 eqssd
 |-  ( ph -> { x e. A | B < +oo } = A )