| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pimgtpnf2f.1 |
|- F/_ x F |
| 2 |
|
pimgtpnf2f.2 |
|- F/_ x A |
| 3 |
|
pimgtpnf2f.3 |
|- ( ph -> F : A --> RR ) |
| 4 |
|
nfcv |
|- F/_ y A |
| 5 |
|
nfv |
|- F/ y +oo < ( F ` x ) |
| 6 |
|
nfcv |
|- F/_ x +oo |
| 7 |
|
nfcv |
|- F/_ x < |
| 8 |
|
nfcv |
|- F/_ x y |
| 9 |
1 8
|
nffv |
|- F/_ x ( F ` y ) |
| 10 |
6 7 9
|
nfbr |
|- F/ x +oo < ( F ` y ) |
| 11 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
| 12 |
11
|
breq2d |
|- ( x = y -> ( +oo < ( F ` x ) <-> +oo < ( F ` y ) ) ) |
| 13 |
2 4 5 10 12
|
cbvrabw |
|- { x e. A | +oo < ( F ` x ) } = { y e. A | +oo < ( F ` y ) } |
| 14 |
3
|
ffvelcdmda |
|- ( ( ph /\ y e. A ) -> ( F ` y ) e. RR ) |
| 15 |
14
|
rexrd |
|- ( ( ph /\ y e. A ) -> ( F ` y ) e. RR* ) |
| 16 |
15
|
pnfged |
|- ( ( ph /\ y e. A ) -> ( F ` y ) <_ +oo ) |
| 17 |
|
pnfxr |
|- +oo e. RR* |
| 18 |
17
|
a1i |
|- ( ( ph /\ y e. A ) -> +oo e. RR* ) |
| 19 |
15 18
|
xrlenltd |
|- ( ( ph /\ y e. A ) -> ( ( F ` y ) <_ +oo <-> -. +oo < ( F ` y ) ) ) |
| 20 |
16 19
|
mpbid |
|- ( ( ph /\ y e. A ) -> -. +oo < ( F ` y ) ) |
| 21 |
20
|
ralrimiva |
|- ( ph -> A. y e. A -. +oo < ( F ` y ) ) |
| 22 |
|
rabeq0 |
|- ( { y e. A | +oo < ( F ` y ) } = (/) <-> A. y e. A -. +oo < ( F ` y ) ) |
| 23 |
21 22
|
sylibr |
|- ( ph -> { y e. A | +oo < ( F ` y ) } = (/) ) |
| 24 |
13 23
|
eqtrid |
|- ( ph -> { x e. A | +oo < ( F ` x ) } = (/) ) |