| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pimgtpnf2f.1 |  |-  F/_ x F | 
						
							| 2 |  | pimgtpnf2f.2 |  |-  F/_ x A | 
						
							| 3 |  | pimgtpnf2f.3 |  |-  ( ph -> F : A --> RR ) | 
						
							| 4 |  | nfcv |  |-  F/_ y A | 
						
							| 5 |  | nfv |  |-  F/ y +oo < ( F ` x ) | 
						
							| 6 |  | nfcv |  |-  F/_ x +oo | 
						
							| 7 |  | nfcv |  |-  F/_ x < | 
						
							| 8 |  | nfcv |  |-  F/_ x y | 
						
							| 9 | 1 8 | nffv |  |-  F/_ x ( F ` y ) | 
						
							| 10 | 6 7 9 | nfbr |  |-  F/ x +oo < ( F ` y ) | 
						
							| 11 |  | fveq2 |  |-  ( x = y -> ( F ` x ) = ( F ` y ) ) | 
						
							| 12 | 11 | breq2d |  |-  ( x = y -> ( +oo < ( F ` x ) <-> +oo < ( F ` y ) ) ) | 
						
							| 13 | 2 4 5 10 12 | cbvrabw |  |-  { x e. A | +oo < ( F ` x ) } = { y e. A | +oo < ( F ` y ) } | 
						
							| 14 | 3 | ffvelcdmda |  |-  ( ( ph /\ y e. A ) -> ( F ` y ) e. RR ) | 
						
							| 15 | 14 | rexrd |  |-  ( ( ph /\ y e. A ) -> ( F ` y ) e. RR* ) | 
						
							| 16 | 15 | pnfged |  |-  ( ( ph /\ y e. A ) -> ( F ` y ) <_ +oo ) | 
						
							| 17 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 18 | 17 | a1i |  |-  ( ( ph /\ y e. A ) -> +oo e. RR* ) | 
						
							| 19 | 15 18 | xrlenltd |  |-  ( ( ph /\ y e. A ) -> ( ( F ` y ) <_ +oo <-> -. +oo < ( F ` y ) ) ) | 
						
							| 20 | 16 19 | mpbid |  |-  ( ( ph /\ y e. A ) -> -. +oo < ( F ` y ) ) | 
						
							| 21 | 20 | ralrimiva |  |-  ( ph -> A. y e. A -. +oo < ( F ` y ) ) | 
						
							| 22 |  | rabeq0 |  |-  ( { y e. A | +oo < ( F ` y ) } = (/) <-> A. y e. A -. +oo < ( F ` y ) ) | 
						
							| 23 | 21 22 | sylibr |  |-  ( ph -> { y e. A | +oo < ( F ` y ) } = (/) ) | 
						
							| 24 | 13 23 | eqtrid |  |-  ( ph -> { x e. A | +oo < ( F ` x ) } = (/) ) |